【算法面试】堆算法笔试面试全解(金三银四面试专栏启动)

本文介绍了大根堆的概念,包括其创建过程,并通过实例展示了如何使用大根堆解决找最小的K个数、设计数据流中第k大元素的类以及数组中第k大的数字等算法问题。文章还提供了Java实现的代码示例,并提及了相关面试题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

📫作者简介:小明java问道之路2022年度博客之星全国TOP3,专注于后端、中间件、计算机底层、架构设计演进与稳定性建工设优化。文章内容兼具广度深度、大厂技术方案,对待技术喜欢推理加验证,就职于知名金融公司后端高级工程师。

        

📫 热衷分享,喜欢原创~ 关注我会给你带来一些不一样的认知和成长。

        

🏆 2022博客之星TOP3 | CSDN博客专家 | 后端领域优质创作者 | CSDN内容合伙人

🏆 InfoQ(极客邦)签约作者、阿里云专家 | 签约博主、51CTO专家 | TOP红人、华为云享专家

        

🔥如果此文还不错的话,还请👍关注、点赞、收藏三连支持👍一下博主~ 


🍅 文末获取联系 🍅  👇🏻 精彩专栏推荐订阅收藏 👇🏻

专栏系列(点击解锁)

学习路线(点击解锁)

知识定位

🔥Redis从入门到精通与实战🔥

Redis从入门到精通与实战

围绕原理源码讲解Redis面试知识点与实战

🔥MySQL从入门到精通🔥

MySQL从入门到精通

全面讲解MySQL知识与企业级MySQL实战

🔥计算机底层原理🔥

深入理解计算机系统CSAPP

以深入理解计算机系统为基石,构件计算机体系和计算机思维

Linux内核源码解析

围绕Linux内核讲解计算机底层原理与并发

🔥数据结构与企业题库精讲🔥

数据结构与企业题库精讲

结合工作经验深入浅出,适合各层次,笔试面试算法题精讲

🔥互联网架构分析与实战🔥

企业系统架构分析实践与落地

行业最前沿视角,专注于技术架构升级路线、架构实践

互联网企业防资损实践

互联网金融公司的防资损方法论、代码与实践

🔥Java全栈白宝书🔥

精通Java8与函数式编程

本专栏以实战为基础,逐步深入Java8以及未来的编程模式

深入理解JVM

详细介绍内存区域、字节码、方法底层,类加载和GC等知识

深入理解高并发编程

深入Liunx内核、汇编、C++全方位理解并发编程

Spring源码分析

Spring核心七IOC/AOP等源码分析

MyBatis源码分析

MyBatis核心源码分析

Java核心技术

只讲Java核心技术

本文目录

本文目录

本文导读

一、图解大根堆

1、大根堆的概念

2、创建堆的过程(heapInsert)

二、最小的K个数

三、设计一个找数据流中第 k 大元素的类

四、数组中的第 k 大的数字 

总结


本文导读

本文针对堆算法笔试,首先图解大根堆,了解大根堆的概念以及创建堆的过程。

题目选择,最小的K个数、设计一个找数据流中第 k 大元素的类、数组中的第 k 大的数字为简单和中等题目。

进阶题目剑指Offer中的数据流中的中位数,由于面试不常考,想算法进阶、学习了解的读者可以自行学习。

一、图解大根堆

1、大根堆的概念

大根堆就是根节点是整棵树的最大值(根节点大于等于左右子树的最大值),对于他的任意子树,根节点也是最大值。

大根堆有两个操作,一个创建堆heapInsert时间复杂度是O(N),一个是当大根堆里的某个节点的值,发生变化的时候,需要对这个大根堆进行调整,每一次调整时间复杂度是O(lg(N)),调整的次数是跟这个堆的高度有关。

2、创建堆的过程(heapInsert)

比如一棵树有N个元素,存放在数组里分别对应0~N-1,假设数组中从0到 i-1 位置的元素是一个大根堆,然后把第i个位置的元素插入大根堆里。

构造一个新的大根堆,就需要从第 i 个位置的元素开始,依次看它的父节点的值是否小于它,如果小于就进行交换,直到它的父节点不小于它,或者到了该大根堆的最顶端的根节点,这一次过程才算彻底结束。

二、最小的K个数

题目描述:输入整数数组 arr ,找出其中最小的 k 个数。

例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。

本题是求前 K 小,因此用一个容量为 K 的大根堆,每次 poll 出最大的数(相当于删除比第k+1大的数,保存就是前K小),那堆中保留的就是前 K 小。

虽然小根堆也可以实现,小根堆的话需要把全部的元素都入堆,那是 O(NlogN),就不是 O(NlogK)
这个方法比快排(O(N))慢,但是因为 Java 中提供了现成的 PriorityQueue(默认小根堆)

    /**
     * 保持堆的大小为K,然后遍历数组中的数字,遍历的时候做如下判断:
     * 1. 若目前堆的大小小于K,将当前数字放入堆中。
     * 2. 否则判断当前数字与大根堆堆顶元素的大小关系,如果当前数字比大根堆堆顶还大,这个数就直接跳过;
     * <p>
     * 反之如果当前数字比大根堆堆顶小,先poll掉堆顶,再将该数字放入堆中。
     *
     * @param arr
     * @param k
     * @return
     */
    public int[] getLeastNumbers(int[] arr, int k) {

        // PriorityQueue 默认是小根堆,实现大根堆需要重写一下比较器。
        Queue<Integer> pq = new PriorityQueue<>((v1, v2) -> v2 - v1);

        for (int num : arr) {
            if (pq.size() < k) {
                pq.offer(num);
            } else if (num < pq.peek()) {  // 检索但不删除此队列的头部
                pq.poll();     // 删除头结点
                pq.offer(num); // 讲num插入
            }
        }

        // 返回堆中的元素
        int[] res = new int[pq.size()];
        int idx = 0;
        for (int num : pq) {
            res[idx++] = num;
        }
        return res;
    }

三、设计一个找数据流中第 k 大元素的类

题目描述:设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k 大元素,不是第 k 个不同的元素。

请实现 KthLargest 类:

KthLargest(int k, int[] nums) :使用整数 k 和整数流 nums 初始化对象。

int add(int val) :将 val 插入数据流 nums 后,返回当前数据流中第 k 大的元素。

使用小根堆实现

构造的时候,使用一个大小为 k 的小根堆(优先队列)来存储前 k 大的元素,其中优先队列的队头为队列中最小的元素,也就是第 k 大的元素。

添加的时候,将元素 val 加入到优先队列中,如果优先队列的大于 k,队头元素弹出,以保证优先队列的大小为 k。

class KthLargest {
    PriorityQueue<Integer> pq;
    int k;

    /**
     * 使用一个大小为 k 的小根堆(优先队列)来存储前 k 大的元素
     * 其中优先队列的队头为队列中最小的元素,也就是第 k 大的元素。
     *
     * @param k
     * @param nums
     */
    public KthLargest(int k, int[] nums) {
        this.k = k;
        pq = new PriorityQueue<>();
        for (int x : nums) {
            add(x);
        }
    }

    public int add(int val) {
        pq.offer(val);       // 将元素 val 加入到优先队列中

        // 如果优先队列的大于 k,队头元素弹出,以保证优先队列的大小为 k
        if (pq.size() > k) {
            pq.poll();
        }
        return pq.peek();
    }
}

使用数组实现小根堆

构造的时候,先对数组进行排序,如果接收的数组nums的长度小于k,就直接将nums的元素都加入到Arraylist中,如果大于,只因后k个元素(前k大的元素)加入到ArrayList中

添加的时候,直接添加到ArrayList中,只有当ArrayList的大小大于1才进行后续操作,再排序,如果ArrayList的大小大于k,就移除第一项,最后ArrayList的大小等于k返回第一项的值,否则就是不存在第k大的值返回null

class KthLargest {
    List<Integer> kNums = new ArrayList<Integer>();
    int k;

    public KthLargest(int k, int[] nums) {
        this.k = k;
        if (null != nums && nums.length > 0) {
            Arrays.sort(nums);       // 先对数组进行排序
            if (nums.length <= k) {
                for (int i = 0; i < nums.length; i++) { // 如果接收的数组nums的长度小于k,就直接将nums的元素都加入到Arraylist中
                    kNums.add(nums[i]);
                }
            } else { // 如果大于,就只取后k个元素(前k大的元素)加入到ArrayList中
                for (int i = nums.length - 1; i >= nums.length - k; i--) {
                    kNums.add(nums[i]);
                }
            }
        }
    }

    public Integer add(int val) {
        kNums.add(val); // 直接添加到ArrayList中,只有当ArrayList的大小大于1才进行后续操作
        if (kNums.size() > 1) {
            kNums.sort(Integer::compare);

            // 如果ArrayList的大小大于k,就移除第一项
            if (kNums.size() > k) {
                kNums.remove(0);
            }
        }

        // 最后ArrayList的大小等于k返回第一项的值,否则就是不存在第k大的值返回null
        return kNums.size() == k ? kNums.get(0) : null;
    }
}

四、数组中的第 k 大的数字 

题目描述:有一个整数数组,请你根据快速排序的思路,找出数组中第 k 大的数。

给定一个整数数组 a ,同时给定它的大小n和要找的 k ,请返回第 k 大的数(包括重复的元素,不用去重),保证答案存在。

题目解析:

优先队列(小根堆)默认是自然排序(升序),队头元素(根)是堆内的最小元素,对于小根堆来说,只要没满就可以加入(不需要比较);

如果满了,才判断是否需要替换第一个元素,在小根堆内,存储着K个较大的元素,根是这K个中最小的,如果出现比根还要大的元素,说明可以替换根

public int findKth(int[] a, int n, int K) {
    // 优先队列(小根堆)默认是自然排序(升序),队头元素(根)是堆内的最小元素
    PriorityQueue<Integer> queue = new PriorityQueue<>(K);
    
    // 遍历每一个元素,调整小根堆
    for (int num : a) {
        // 对于小根堆来说,只要没满就可以加入(不需要比较);如果满了,才判断是否需要替换第一个元素
        if (queue.size() < K) {
            queue.add(num);
        } else {
            // 在小根堆内,存储着K个较大的元素,根是这K个中最小的,如果出现比根还要大的元素,说明可以替换根
            if (num > queue.peek()) {
                queue.poll();   // 删除小跟,留大的
                queue.add(num);
            }
        }
    }
    return queue.isEmpty() ? 0 : queue.peek();
}

总结

本文针对堆算法笔试,首先图解大根堆,了解大根堆的概念以及创建堆的过程。

题目选择,最小的K个数、设计一个找数据流中第 k 大元素的类、数组中的第 k 大的数字为简单和中等题目。

进阶题目剑指Offer中的数据流中的中位数,由于面试不常考,想算法进阶、学习了解的读者可以自行学习。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小 明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值