旅游网站之数据分析

目录

第1关:统计每个城市的宾馆平均价格

代码

第2关:统计酒店评论中词频较高的词

代码


第1关:统计每个城市的宾馆平均价格

任务描述
本关任务:使用Hbase的MapReduce对酒店和城市数据进行分析,统计每个城市的酒店平均价格,其中酒店和城市数据已经存储在Hbase的t_city_hotels_info表中(表结构可在编程要求中进行查看)。

相关知识
为了完成本关任务,你需要掌握:

如何配置Hbase的MapReduce类;
如何使用Hbase的MapReduce进行数据分析。
如何配置Hbase的MapReduce类
MapReduce是运行在Job上的一个并行计算框架,分为Map节点和Reduce节点。

Hbase提供了org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil的initTableMapperJob和initTableReducerJob两个方法来完成MapReduce的配置。

代码
package com.processdata;
 
import java.io.IOException;
import java.util.Scanner;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
 
import com.util.HBaseUtil;
 
/**
 * 使用MapReduce程序处理HBase中的数据并将最终结果存入到另一张表 1中
 */
public class HBaseMapReduce extends Configured implements Tool {
    public static class MyMapper extends TableMapper<Text, DoubleWritable> {
        public static final byte[] column = "price".getBytes();
        public static final byte[] family = "hotel_info".getBytes();
        @Override
        protected void map(ImmutableBytesWritable rowKey, Result result, Context context)
                throws IOException, InterruptedException {
            /********** Begin *********/
		    String cityId = Bytes.toString(result.getValue("cityInfo".getBytes(), "cityId".getBytes()));     
            byte[] value = result.getValue(family, column);     
            Double value1 = Double.parseDouble(Bytes.toString(value));     
            DoubleWritable i = new DoubleWritable(value1);     
            String priceKey = cityId;     
            context.write(new Text(priceKey),i); 
		  	/********** End *********/
        }
    }
    public static class MyTableReducer extends TableReducer<Text, DoubleWritable, ImmutableBytesWritable> {
        @Override
        public void reduce(Text key, Iterable<Doubl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小柒_02

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值