数据分析-数据预处理

数据分析-数据预处理

处理重复值

duplicated( )查找重复值

import pandas as pd
a=pd.DataFrame(data=[['A',19],['B',19],['C',20],['A',19],['C',20]],
               columns=['name','age'])
print(a)
print('--------------------------')
a=a.duplicated()
print(a)

image-20211119093216546

只判断全局不判断每个

any()

import pandas as pd
a=pd.DataFrame(data=[['A',19],['B',19],['C',20],['A',19],['C',20]],
               columns=['name','age'])
print(a)
print('--------------------------')
a=any(a.duplicated())
print(a)

image-20211119093406143

drop_duplicates( )删除重复值

参数inplace 是否在原数据上修改

import pandas as pd
a=pd.DataFrame(data=[['A',19],['B',19],['C',20],['A',19],['C',20]],
               columns=['name','age'])
print(a)
print('--------------------------')
b=a.drop_duplicates(inplace=False)
a.drop_duplicates(inplace=True)
print(a)
print('--------------------------')
print(b)

image-20211119093806010

处理缺失值

NaN表示缺失值

import pandas as pd
a=pd.read_csv(r'text.csv')
print(a)

image-20211119094341814

isnull( )判断所有位置元素是否缺失

import pandas as pd
a=pd.read_csv(r'text.csv')
print(a.isnull())

image-20211119094701761

any( )判断行列元素是否缺失

import pandas as pd
a=pd.read_csv(r'text.csv')
print(a.isnull().any())
print(a.isnull().any(axis=1))

image-20211119094939603

del( )dropna( )删除

import pandas as pd
a=pd.read_csv(r'text.csv')
del a['name']
print(a)

image-20211119095458462

import pandas as pd
a=pd.read_csv(r'text.csv')
b=a.dropna(axis=0)
print(b)
c=a.dropna(axis=1)
print(c)

image-20211119095640211

del( )删除指定列,dropna( )删除含有缺失值的列(行)

fillna( )缺失值填补

import pandas as pda=pd.read_csv(r'text.csv')a=a.fillna('wu')print(a)

image-20211119100057705

根据上(下)数据填充

pad / ffill: 按照上一行进行填充
backfill / bfill: 按照下一行进行填充

import pandas as pda=pd.read_csv(r'text.csv')print(a)print('---------------------')b=a.fillna(method='pad')print(b)print('---------------------')c=a.fillna(method='bfill')print(c)

image-20211119105520231

数值型数据填充

平均值mean()

每列的平均值填充

import pandas as pda=pd.read_csv(r'text.csv')
print(a)
print('---------------------')
a=a.fillna(a.mean())
print(a)

image-20211119103513133

中位数median( )

import pandas as pd
a=pd.read_csv(r'text.csv')
print(a)print('---------------------')
a=a.fillna(a.median( ))
print(a)

image-20211119103627377

字符型数据填充

众数mode( )

import pandas as pd
a=pd.read_csv(r'text.csv')
print(a)
print('---------------------')
for i in a.columns:
    a[i] = a[i].fillna(a[i].mode()[0])
    print(a)

image-20211119104421611

数据变换

map( )数据转换

import pandas as pd
data={'sex':[1,0,1,1,0]}
a=pd.DataFrame(data)
a['sex-T']=a['sex'].map({1:'男',0:'女'})
print(a)

image-20211119111114072

哑变量

import pandas as pd
data={'sex':['男','女','男','女','保密']}
a=pd.DataFrame(data)
a=pd.get_dummies(a)
print(a)

image-20211119113232240

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小旺不正经

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值