Leetcode 1799. N 次操作后的最大分数和

本文介绍了如何使用动态规划和记忆化搜索解决最优化问题,以求解给定数组中两两配对的最大分数。通过状态压缩和预处理gcd数组,实现了时间复杂度为O(2^n * n^2)的空间复杂度为O(n^2)的解决方案。文章通过示例详细阐述了算法思路,并提供了Java和C++的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你 nums ,它是一个大小为 2 * n 的正整数数组。你必须对这个数组执行 n 次操作。

在第 i 次操作时(操作编号从 1 开始),你需要:

    选择两个元素 x 和 y 。
    获得分数 i * gcd(x, y) 。
    将 x 和 y 从 nums 中删除。

请你返回 n 次操作后你能获得的分数和最大为多少。

函数 gcd(x, y) 是 x 和 y 的最大公约数。

 

示例 1:

输入:nums = [1,2]
输出:1
解释:最优操作是:
(1 * gcd(1, 2)) = 1

示例 2:

输入:nums = [3,4,6,8]
输出:11
解释:最优操作是:
(1 * gcd(3, 6)) + (2 * gcd(4, 8)) = 3 + 8 = 11

示例 3:

输入:nums = [1,2,3,4,5,6]
输出:14
解释:最优操作是:
(1 * gcd(1, 5)) + (2 * gcd(2, 4)) + (3 * gcd(3, 6)) = 1 + 4 + 9 = 14

 

提示:

    1 <= n <= 7
    nums.length == 2 * n
    1 <= nums[i] <= 106


解法一:状态压缩 + 记忆化搜索 + 预处理

一共有2n个数可以两两配对,n最大为7,因此可以考虑使用二进制位来枚举某个数是否被选取,初始状态位mask=11...11mask=11...11mask=11...11,当某位被选择时,变为0。

从初始状态(1<<n)−1(1 << n) - 1(1<<n)1开始进行搜索,每次选择两个数进行配对,每次选取两个数的位置为i,ji,jij,我们使用异或运算便可以将对应位置变为0,即maskmaskmask^ (1<<i)(1 << i)(1<<i) ^ (1<<j)(1 << j)(1<<j),直至选取所有数后即mask=0mask=0mask=0,便得到答案,保存最大值。单纯地搜索会导致时间超时,因此创建dp数组进行记忆化搜索。

dp[mask]: 代表从当前状态mask出发能够获得的分数。对于当前的状态maks来说,以前如何选取并不影响以后能够获得的最大分数。

对于每次的gcd计算,我们也可以预先创建一个二维数组进行保存。

  • 时间复杂度:O(2n∗n2)O(2^n * n^2)O(2nn2),其中n为nums数组的长度
  • 空间复杂度:O(n2)O(n^2)O(n2)
class Solution {
    int n;
    int[] dp;
    int[][] gcd;
    public int maxScore(int[] nums) {
        n = nums.length;
        dp = new int[1 << n];
        gcd = new int[n][n];
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) gcd[i][j]= GCD(nums[i], nums[j]);
        }
        return dfs(1, (1 << n) - 1, 0, nums);
    }
    int dfs(int x, int mask, int sum, int[] nums) { 
        if (x == n / 2 + 1) return sum;
        if (dp[mask] > 0) return sum + dp[mask]; // sum为已经选取的数获得的分数 + 未选取的数能够获得的最大分数
        int ans = 0;
        for (int i = 0; i < n; i++) {
            if (((1 << i) & mask) == 0) continue;
            for (int j = i + 1; j < n; j++) {
                if (((1 << j) & mask) == 0) continue;
                int next = mask ^ (1 << i) ^ (1 << j); 
                ans = Math.max(ans, dfs(x + 1,  next, sum + x * gcd[i][j], nums));
            }
        }
        dp[mask] = ans - sum; //ans为能够获得的总分数 减去sum后才是maks状态获得的最大分数
        return ans;
    }
    int GCD(int a, int b) {return b == 0? a : GCD(b, a % b);}
}
class Solution {
public:
    int n;
    vector<int> dp;
    vector<vector<int>> gcd;
    int maxScore(vector<int>& nums) {
        n = nums.size();
        dp.resize(1 << n, 0);
        gcd.resize(n, vector<int>(n, 0)); 
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) gcd[i][j]= GCD(nums[i], nums[j]);
        }
        return dfs(1, (1 << n) - 1, 0, nums);
    }
    int dfs(int x, int mask, int sum, vector<int>& nums) { 
        if (x == n / 2 + 1) return sum;
        if (dp[mask] > 0) return sum + dp[mask]; // // sum为已经选取的数获得的分数 + 未选取的数能够获得的最大分数
        int ans = 0;
        for (int i = 0; i < n; i++) {
            if (((1 << i) & mask) == 0) continue;
            for (int j = i + 1; j < n; j++) {
                if (((1 << j) & mask) == 0) continue;
                int next = mask ^ (1 << i) ^ (1 << j); 
                ans = max(ans, dfs(x + 1,  next, sum + x * gcd[i][j], nums));
            }
        }
        dp[mask] = ans - sum; //ans为能够获得的总分数 减去sum后才是maks状态获得的最大分数
        return ans;
    }
    int GCD(int a, int b) {return b == 0? a : GCD(b, a % b);}
};

如果有问题,欢迎评论区交流, 如果有帮助到你,请给题解点个赞和收藏哈~~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值