基于Pytorch使用GPU运行模型方法及注意事项
一、在基于pytorch深度学习进行模型训练和预测的时候,往往数据集比较大,而且模型也可能比较复杂,但如果直接训练调用CPU运行的话,计算运行速度很慢,因此使用GPU进行模型训练和预测是非常有必要的,可以大大提高实验效率。如果还没有配置好运行环境的博友们可以参考下面博主的文章。
1、点击打开《基于Windows中学习Deep Learning之搭建Anaconda+Cudnn+Cuda+Pytorch+Pycharm工具和配置环境完整最简版》文章
2、点击打开《基于Pytorch查看本地或者远程服务器GPU及使用方法》文章
二、具体方法分为两个大部分(模型和数据集)。
- 首先将模型model移动到cuda设备也就是GPU上,注意:此大模型可以内含多个子模型,子模型无需再重复移动到GPU上
model = Net() # 举例模型
device = torch.device("cuda:0" if