本文梳理了2023-2024年交通预测领域的6篇代表性研究。研究主要聚焦于Transformer模型在交通预测中的应用,涉及轨迹预测、拥堵预测和流量预测等多个方向。其中,《低检测率车辆轨迹串联时空预测与图像确认联合模型》提出结合Transformer和图像验证的创新方法,解决低检测率下的轨迹重建问题。《基于双Transformer的混合交通环境下变道意向和轨迹预测》通过意图预测与轨迹预测的协同建模,显著提升了预测准确率。其他研究则针对多模态交通数据整合、时空特征提取等挑战,提出了图神经网络与注意力机制结合的解决方案。这些研究为智能交通系统提供了新的技术路径,但同时也存在模型复杂度高、计算成本大等亟待解决的问题。
交通预测相关的一些文章,部分内容较为难理解。
一、24年
1.x 不相关:(车辆轨迹、图像)A Joint Spatiotemporal…
关键词:
Traffic flow prediction
Transformer
标题《A Joint Spatiotemporal Prediction and Image Confirmation Model for Vehicle Trajectory Concatenation With Low Detection Rates》
可译为《低检测率 车辆轨迹串联 时空