“不到最后一刻,千万别放弃。最后得到好东西,不是幸运,有时候,必须有前面的苦心经营,才有后面的偶然相遇。”
注:仅学习使用~
前情提要:
- 【时空图神经网络 & 交通】相关模型1:STGCN | 完全卷积结构,高效的图卷积近似,瓶颈策略 | 时间门控卷积层:GLU(Gated Linear Unit),一种特殊的非线性门控单元
- 【时空图神经网络 & 交通】相关模型2:STSGCN | 时空同步图卷积网络 | 空间相关性,时间相关性,空间-时间异质性
- 【时空图神经网络 & 交通】相关模型3:STFGNN | 空间-时间依赖性 | 基于数据驱动的方法来生成“时间图” | 时空融合图模块,门控卷积模块 | 动态时间规整 | 顶会文章解析
- 【时空图神经网络 & 交通】相关模型4:ASTGCN,基于注意力机制的时空图卷积网络 | 时空卷积模块:空间维度上的图卷积,时间维度上的标准卷积
- 【时空图神经网络 & 交通】相关模型5:DCRNN,扩散卷积递归神经网络 | 使用扩散卷积来捕获空间依赖性,使用Seq2Seq架构来建模时间动态 | MTS:多元时间序列