【交通 Traffic & Transformer】同一篇文章,内容排版稍有不同 | 交通预测模型中,Transformer相比传统GCN模型有何优势?

 
冰冻三尺,非一日之寒。

前情提要:

Transformer相比传统GCN模型在交通预测中具有三大核心优势:

1、动态空间依赖建模:
通过自注意力机制自动学习节点间的动态关系,摆脱了GCN依赖预定义静态邻接矩阵的局限,能更准确反映交通流的实际时空相关性。

2、长程依赖捕捉能力:
多头注意力机制可同时建模局部和全局依赖关系,解决了GCN因消息传递机制导致的远距离节点信息衰减问题。

3、层次化特征提取:
通过堆叠Transformer层实现特征的多层级抽象(如架构图中的全局编码器和局部解码器协同),而GCN通常只能进行单层空间聚合。

实验证明该模型在PeMS等基准数据集上预测误差降低15%-20%,尤其擅长处理突发流量变化等复杂场景。

 
在这里插入图片描述

 

🎯作者主页: 追光者♂🔥

        

🌸个人简介:
 
💖[1] 软件工程硕士💖
 
🌿[2] 2023年城市之星领跑者TOP1(哈尔滨)🌿
 
🌟[3] 2022年度博客之星人工智能领域TOP4🌟
 
🏅[4] 阿里云社区特邀专家博主🏅
&nbs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追光者♂

谢谢你呀!一起加油!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值