接上一篇:
Heterogeneous Network Embedding异构图嵌入(1)| 编码器-解码器框架组成部分 | 基于矩阵因式分解、随机游走、AE自动编码器、图神经网络、知识图谱嵌入的HNE模型特点
重点地方,我均已 做了不同颜色标记。
一、应用领域、基准数据集、开放源代码和性能比较
本节重点介绍 HNE 的应用领域、基准数据集、开源工具和性能评估。
应用领域和评估指标
通过 HNE 技术学习到新的顶点表示后,就可以用来解决后续的各种机器学习任务。HNE 对节点分类、节点聚类、链接预测、推荐系统和可视化等各种图分析应用大有裨益(下图)。同时,表征学习的有效性 也可以通过评估它们在这些不同的后续任务中的表现来验证[12]。
HNE 的应用领域: