前情提要:
- ③ ProSTformer: 用于短期交通流量预测的渐进式时空自注意力模型 (完全使用纯自注意力机制进行交通预测 | ④ 用于水路交通状态预测的半动态时空图神经网络 | 引入先验知识来改进自注意力机制
- ① TPGraph:《用于准确预测干道交通流量的时空图学习框架》 | ② DmgSTGAT《用于交通预测的动态多粒度时空图注意网络》| 多尺度时间特征融合模块 | 多粒度空间-时间相关性
本文提出一种基于图神经网络和Transformer的多模式交通预测框架MPGNNFormer,用于公交站点短期和长期流量预测。通过构建站点距离网络和深度聚类提取移动模式,并设计STGNNFormer模型捕捉时空依赖性。实验证明该方法在保证预测精度的同时提高了计算效率,为智能交通系统提供了新的技术思路。
思考:基于Transformer的编码器-解码器结构 在交通流预测中如何实现时空特征的提取和融合?现有的交通流预测模型在处理时空相关性方面存在哪些局限性?