⑤ 探索公交车站出行模式: 多模式深度学习预测框架 | ⑥ 具有解耦时空嵌入功能的 Transformer 网络用于交通流量预测

前情提要:

本文提出一种基于图神经网络和Transformer的多模式交通预测框架MPGNNFormer,用于公交站点短期和长期流量预测。通过构建站点距离网络和深度聚类提取移动模式,并设计STGNNFormer模型捕捉时空依赖性。实验证明该方法在保证预测精度的同时提高了计算效率,为智能交通系统提供了新的技术思路。

思考:基于Transformer的编码器-解码器结构 在交通流预测中如何实现时空特征的提取和融合?现有的交通流预测模型在处理时空相关性方面存在哪些局限性?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追光者♂

谢谢你呀!一起加油!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值