前情提要:
- ⑬ 用于长短期交通流量预测的Transformer增强型周期时空卷积网络 | ⑭ 用于交通流量预测的分层时空图卷积网络和Transformer网络
- ⑪ 多交通模式的短期客流预测: 基于Transformer和残差网络的多任务学习方法 | ⑫ 基于Transformer和深度学习的多层交通流预测模型
- ⑨VDGCNeT:基于全网虚拟动态图卷积神经网络 和 Transformer 的新型交通预测模型 | ⑩ADCT-Net: 通过双图交叉融合Transformer实现自适应交通预测神经网络
- ⑦ 用于交通预测的多尺度时空感知Transformer | ⑧ 基于注意力的 时空图Transformer 用于交通流量预测
- ⑤ 探索公交车站出行模式: 多模式深度学习预测框架 | ⑥ 具有解耦时空嵌入功能的 Transformer 网络用于交通流量预测
- ③ ProSTformer: 用于短期交通流量预测的渐进式时空自注意力模型 (完全使用纯自注意力机制进行交通预测 | ④ 用于水路交通状态预测的半动态时空图神经网络 | 引入先验知识来改进自注意力机制
- ① TPGraph:《用于准确预测干道交通流量的时空图学习框架》 | ② DmgSTGAT《用于交通预测的动态多粒度时空图注意网络》| 多尺度时间特征融合模块 | 多粒度空间-时间相关性