排序算法之快速排序
快速排序属于交换排序的一种,其基本思想是基于分治法的。其算法时间复杂度为O(log2N),堪称是所有内部排序算法中平均性能最优的排序算法。。
1-快速排序的基本思想
从待排序表L:【0…n】中任取一个元素pivot作为枢轴/分界元素(通常取的是下标为0的首元素),通过一趟排序可将待排序列表划分为两部分——【0…k-1】和【k+1…n】,其中:【0…k-1】的元素都是小于等于pivot的元素子列表,【k+1…n】都是大于等于pivot的子列表,显然pivot枢轴元素会被放置到下标为k的位置上,这个过程被视为一次快速排序过程。然后就是通过相同的排序过程,递归式的对子列表进行排序操作,直到每部分只有一个元素或者为空时终止,此时:也得到了最终排序好的列表。
2-快速排序的过程图解
假设现在有待排序列表:
【49 38 65 97 76 13 27 49】,则快速排序的过程如下:
第一次排序过程
可将待排序列表:
【49 38 65 97 76 13 27 49】划分为两个子列表:
第二次分治排序过程
可将第一次排序得到的两个子列表分别进行排序:
子列表1的排序过程
子列表2的排序过程
子列表2-1的分治排序过程
由于第二次排序结果的子列表1中包含大于1个的数据元素,因此还要对第2次排序结果的子列表2-1进行排序。
排序结果
3-Java代码实现
package com.xwd;
/**
* @ClassName Main
* @Description: com.xwd
* @Auther: xiwd
* @Date: 2022/2/8 - 02 - 08 - 17:52
* @version: 1.0
*/
public class Main {
//methods
/*快速排序 */
public static int[] quickSort(int[] nums,int low,int high){
if(low<high){
//递归划分操作
int pivotPos=partition(nums,low,high);
quickSort(nums,low,pivotPos-1);
quickSort(nums,pivotPos+1,high);
}
return nums;
}
/*分治法排序 */
public static int partition(int[] nums,int low,int high){
//将表中的第一个元素设为枢轴,对表进行划分
int pivot=nums[low];
//循环-进行数据检索和划分,当low==hight时终止
while(low<high){
//从后向前检索小于pivot的元素
while(low<high&&nums[high]>=pivot) --high;
//将小于pivot的元素移动到pivot的左端
nums[low]=nums[high];
//从前向后检索大于pivot的元素
while(low<high&&nums[low]<=pivot) ++low;
//将大于pivot的元素移动到pivot的右端
nums[high]=nums[low];
}
//将pivot元素放置到low==high的位置
nums[low]=pivot;
return low;//返回pivot最终的分治位置
}
public static void main(String[] args) {
int[] nums=new int[1000];
//随机生成1000个数字
for (int i = 0; i < nums.length; i++) {
nums[i]= (int) ((-1)*Math.random()*10000+Math.random()*10000);
}
quickSort(nums,0,nums.length-1);
for (int num : nums) {
System.out.println(num);
}
}
}
4-例题
题目描述
一个整数数组 nums 。如果任一值在数组中出现 至少两次 ,返回 true ;如果数组中每个元素互不相同,返回 false
结题思路
①利用快速排序算法对原始数组进行排序,得到有序数组;
②通过双指针法,从前向后遍历有序数组,如果连续两个数据元素相同,那么就直接终止遍历,返回true;否则继续向后遍历直至达到数组末尾,最终返回false。
代码编写
class Solution {
/*判断:数组nums中是否存在两个连续相等的数据元素,返回值为boolean类型*/
public boolean containsDuplicate(int[] nums) {
//快速排序
int[] array = quickSort(nums,0,nums.length-1);
int i=0,j=i+1;
boolean flag=false;//标志位
//双指针遍历排序后数组
for(;j<array.length;i++,j++){
if(array[i]==array[j]){
flag=true;
break;
}
}
//返回结果
return flag;
}
/*快速排序 */
public static int[] quickSort(int[] nums,int low,int high){
if(low<high){
//递归划分操作
int pivotPos=partition(nums,low,high);
quickSort(nums,low,pivotPos-1);
quickSort(nums,pivotPos+1,high);
}
return nums;
}
/*分治法排序 */
public static int partition(int[] nums,int low,int high){
//将表中的第一个元素设为枢轴,对表进行划分
int pivot=nums[low];
//循环-进行数据检索和划分,当low==hight时终止
while(low<high){
//从后向前检索小于pivot的元素
while(low<high&&nums[high]>=pivot) --high;
//将小于pivot的元素移动到pivot的左端
nums[low]=nums[high];
//从前向后检索大于pivot的元素
while(low<high&&nums[low]<=pivot) ++low;
//将大于pivot的元素移动到pivot的右端
nums[high]=nums[low];
}
//将pivot元素放置到low==high的位置
nums[low]=pivot;
return low;//返回pivot最终的分治位置
}
}