此类问题可以按照球是否有区别 盒子是否有区别 是否允许空盒约束条件划分8类型
n个球 m个盒子
序号 | 是否球区别 (0 相同 1不同)) | 是否盒区别(0 相同 1不同) | 是否空盒(没有空 0 有空1) | 模型 | 公式 |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 正整数拆分正整数拆分正整数拆分 | G(x)=xm(1−x)(1−x2)(1−x3)...(1−xm),xn系数为求解结果G(x)=\frac{x^m}{(1-x)(1-x^2)(1-x^3)...(1-x^m)},\\x^n系数为求解结果G(x)=(1−x)(1−x2)(1−x3)...(1−xm)xm,xn系数为求解结果 |
1 | 0 | 0 | 1 | 正整数拆分1(1−x)(1−x2)(1−x3)...(1−xm)=(1+x+x2+...)(1+x2+x4+...)\frac{1}{(1-x)(1-x^2)(1-x^3)...(1-x^m)}=(1+x+x^2+...)(1+x^2+x^4+...)(1−x)(1−x2)(1−x3)...(1−xm)1=(1+x+x2+...)(1+x2+x4+...) | G(x)=1(1−x)(1−x2)(1−x3)...(1−xm),xn系数为求解结果G(x)=\frac{1}{(1-x)(1-x^2)(1-x^3)...(1-x^m)},\\x^n系数为求解结果G(x)=(1−x)(1−x2)(1−x3)...(1−xm)1,xn系数为求解结果 |
2 | 0 | 1 | 0 | 不定方程n≥m重复组合f(x)=(x+x2+...)(x+x2+...)=xm(1−x)m=xmxm∑n=0∞Cm+n−1nxn=∑n=0∞Cm+n−1nxn+m=∑n=m∞Cn−1n−mxn=∑n=m∞Cn−1m−1xn=∑n=0∞Cn−1m−1xn不定方程 n\ge m 重复组合\\f(x)=(x+x^2+...)(x+x^2+...)=\frac {x^m}{(1-x)^m}=x^m\\x^m\sum_{n=0}^\infty C_{m+n-1}^{n}x^n=\sum_{n=0}^{\infty}C_{m+n-1}^{n}x^{n+m}=\sum_{n=m}^{\infty}C_{n-1}^{n-m}x^n=\sum_{n=m}^{\infty}C_{n-1}^{m-1}x^n=\sum_{n=0}^{\infty}C_{n-1}^{m-1}x^n不定方程n≥m重复组合f(x)=(x+x2+...)(x+x2+...)=(1−x)mxm=xmxm∑n=0∞Cm+n−1nxn=∑n=0∞Cm+n−1nxn+m=∑n=m∞Cn−1n−mxn=∑n=m∞Cn−1m−1xn=∑n=0∞Cn−1m−1xn | G(x)=Cn−1m−1G(x) =C_{n-1}^{m-1}G(x)=Cn−1m−1 |
3 | 0 | 1 | 1 | 不定方程常用于求取系数1(1−x)m=∑n=0∞Cn+m−1nxn不定方程 常用于求取系数\\\frac{1}{(1-x)^m}=\sum_{n=0}^{\infty}C_{n+m-1}^nx^n不定方程常用于求取系数(1−x)m1=∑n=0∞Cn+m−1nxn | G(x)=Cn+m−1nG(x) = C_{n+m-1}^{n}G(x)=Cn+m−1n |
4 | 1 | 0 | 0 | 放球模型\由于盒子没区别,只需从球里选取就可以了 | G(x)=Cnmm=n时只有一种方法G(x) = C_n^m \\ m=n时 只有一种方法G(x)=Cnmm=n时只有一种方法 |
5 | 1 | 0 | 1 | 放球模型 | G(x)=∑k=1mCnk当m=n时,G(x)=2nG(x)=\sum_{k=1}^{m}C_n^k\\当m=n 时,G(x)=2^nG(x)=∑k=1mCnk当m=n时,G(x)=2n |
6 | 1 | 1 | 0 | 放球模型6个球放4个盒子里面6个里面选出四个放到盒子里面保证没有空盒子放球模型\\6个球放4个盒子里面\\ 6个里面选出四个放到盒子里面保证没有空盒子放球模型6个球放4个盒子里面6个里面选出四个放到盒子里面保证没有空盒子 | G(x)=Amm∗Cnm=m!∗n!m!(n−m)!=n!(n−m)!=AnmG(x)=A_m^m*C_n^m=m!*\frac{n!}{m!(n-m)!}=\frac{n!}{(n-m)!}=A_n^mG(x)=Amm∗Cnm=m!∗m!(n−m)!n!=(n−m)!n!=Anm |
7 | 1 | 1 | 1 | 选取6个球放4个盒子里面每个球有4种选法乘法法则46选取 \\6个球放4个盒子里面 \\每个球有4种选法 乘法法则 4^6选取6个球放4个盒子里面每个球有4种选法乘法法则46 | G(x)=mnG(x)=m^nG(x)=mn |
Cnk=Cn−1k+Cn−1k−1C_n^k = C_{n-1}^k +C_{n-1}^{k-1}Cnk=Cn−1k+Cn−1k−1
递推关系
Cnk=nkCn−1k−1C_n^k=\frac{n}{k}C_{n-1}{k-1}Cnk=knCn−1k−1
递推关系2 ( 帕斯卡 / 杨辉三角公式 ) :
Cnk=Cn−1k+Cn−1k−1C_n^k = C_{n-1}{k}+C_{n-1}{k-1}Cnk=Cn−1k+Cn−1k−1
简单和
∑k=0nCnk=2n\sum_{k=0}^{n}C_n^k=2^n∑k=0nCnk=2n
交错和
∑k=0n(−1)kCnk=0\sum_{k=0}^{n}(-1)^kC_n^k=0∑k=0n(−1)kCnk=0
变下项求和
∑k=0nkCnk=n2n−1可由简单和求导得到\sum_{k=0}^{n}kC_n^k = n2^{n-1} 可由简单和求导得到∑k=0nkCnk=n2n−1可由简单和求导得到
变下求和2
∑k=0nk2Cnk=n(n+1)2n−2\sum_{k=0}^{n}k^2C_n^k=n(n+1)2^{n-2}∑k=0nk2Cnk=n(n+1)2n−2
变上项求和
∑j=0nCjk=Cn+1k+1\sum_{j=0}^{n}C_j^k = C_{n+1}^{k+1}∑j=0nCjk=Cn+1k+1
∑k=0rCmkCnk=Cm+nmr=min(m,n)\sum_{k=0}^rC_m^kC_n^k = C_{m+n}^{m} \quad r = min(m,n)∑k=0rCmkCnk=Cm+nmr=min(m,n)
∑k=0rCmkCnr−k=Cm+nrr=min(m,n)\sum_{k=0}^rC_m^kC_n^{r-k} = C_{m+n}^{r} \quad r = min(m,n)∑k=0rCmkCnr−k=Cm+nrr=min(m,n)
多项式系数
(x1+x2+...xt)n=Cnn1n2...ntx1n1x2n2...xtnt中n1+n2+n3+....+nt=n(x_1+x_2+...x_t)^n =C_{n}^{n_1n_2...n_t}x_1^{n_1}x_2^{n_2}...x_t^{n_t}
\\中 n_1+n_2+n_3+....+n_t = n(x1+x2+...xt)n=Cnn1n2...ntx1n1x2n2...xtnt中n1+n2+n3+....+nt=n
多项式定理
∑Cnn1n2...nt=tn\sum C_n^{n_1n_2...n_t}=t^n∑Cnn1n2...nt=tn
Cnn1n2...nt=n!n1!n2!...nt!C_n^{n_1n_2...n_t}=\frac{n!}{n_1!n_2!...n_t!}Cnn1n2...nt=n1!n2!...nt!n!
Cnn1n2...nt=Cn−1(n1−1)n2....nt+Cn−1n1(n2−1)...nt+Cn−1n1n2...(nt−1)C_n^{n_1n_2...n_t}= C_{n-1}^{(n_1-1)n_2....n_t}+C_{n-1}{n_1(n_2-1)...n_t}+C_{n-1}^{n_1n_2...(n_t -1)}Cnn1n2...nt=Cn−1(n1−1)n2....nt+Cn−1n1(n2−1)...nt+Cn−1n1n2...(nt−1)