使用sklearn将数据集分为训练集和测试集

在机器学习中,数据集需分为训练集和测试集以评估模型泛化能力。常用比例如6:4、7:3、8:2。本文以UCI葡萄酒数据集为例,利用sklearn的train_test_split按比例拆分数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在使用机器学习算法之前,通常我们需要先将数据集分为训练集和测试集。在分配训练集和测试集的时候,如果测试集的数据越小,对模型的泛化误差的估计将会越不准确。所以,在划分数据集的时候我们需要进行权衡。在实际应用中,基于整个数据集数据的大小,训练集数据和测试集数据的划分比例是6:4、7:3或8:2。对于庞大的数据可以使用9:1,甚至是99:1。

我们可以直接使用sklearn提供的train_test_split方法,按照我们所设置的比例将数据集分为测试集和训练集。所使用到的数据集是UCI机器学习样本数据库提供的葡萄酒样本,包含了178个葡萄酒样本,每个样本由13个不同特征组成,一共有三个不同类别的葡萄酒种类。


数据集下载地址:https://download.csdn.net/download/sinat_29957455/10274582

import pandas as pd
from sklearn.model_selection import train_test_split

if __name__ == "__main__
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

修炼之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值