ESMM - 完整空间多任务模型(阿里)

ESMM是阿里妈妈团队提出的用于预估广告点击后转化率(pcvr)的模型,旨在解决样本选择偏差和数据稀疏问题。该模型通过双塔结构,利用曝光样本训练pctr和pctcvr两个任务,以隐式学习pcvr。在训练过程中,cvr塔没有自己的损失函数,而是通过pctr和pcvr的乘积来间接优化。这种方法避免了直接预测pcvr可能导致的概率大于1的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate
  • ESMM: Entire Space Multi-Task Model
  • 论文发表在SIGIR-2018,作者来自阿里妈妈盖坤团队。ESMM被提出用于解决pcvr建模中存在的两个非常重要的问题:样本选择偏差和数据稀疏问题。双塔多任务模型。
  • 常说的cvr 即 cvr预估 即 预估广告被点击后的转化率(Post-Click Conversion Rate)即 pcvr。

1、动机

在这里插入图片描述

  • 目前工业界商业公司流量变现的逻辑背景,一条流量为公司创造商业收入的路径为:请求 →广告曝光→ 广告点击 → 广告转化。
  • 样本选择偏差(SSB,sample selection bias)问题。当时业界在训练pcvr模型时,采用的负样本为点击未转化,正样本为点击已转化。训练样本是在有d点击的样本上构建的。然而在实际线上推理时,是对整个样本空间进行推理的,这就导致了样本选择偏差问题。所以相比只用有点击的样本进行训练,ESMM通过将训练样本变成在有曝光的样本空间上进行训练,来缓解这个gap。
  • 数据稀疏问题。因为用于pcvr训练的样
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

#苦行僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值