- Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate
- ESMM: Entire Space Multi-Task Model
- 论文发表在SIGIR-2018,作者来自阿里妈妈盖坤团队。ESMM被提出用于解决pcvr建模中存在的两个非常重要的问题:样本选择偏差和数据稀疏问题。双塔多任务模型。
- 常说的cvr 即 cvr预估 即 预估广告被点击后的转化率(Post-Click Conversion Rate)即 pcvr。
1、动机
- 目前工业界商业公司流量变现的逻辑背景,一条流量为公司创造商业收入的路径为:请求 →广告曝光→ 广告点击 → 广告转化。
- 样本选择偏差(SSB,sample selection bias)问题。当时业界在训练pcvr模型时,采用的负样本为点击未转化,正样本为点击已转化。训练样本是在有d点击的样本上构建的。然而在实际线上推理时,是对整个样本空间进行推理的,这就导致了样本选择偏差问题。所以相比只用有点击的样本进行训练,ESMM通过将训练样本变成在有曝光的样本空间上进行训练,来缓解这个gap。
- 数据稀疏问题。因为用于pcvr训练的样