- 《Learning Deep Structured Semantic Models for Web Search using Clickthrough Data》
- 论文由微软发表于 CIKM-2013。DSSM被广泛用于工业界的 召回/粗排 阶段。
模型结构
- 模型结构一目了然,非常简单,双塔结构:user侧一个塔,item一个塔,塔用的是MLP。底层各自有各自的embedding。两塔输出特征维度一致,最后做内积或cosine来计算相似度;损失函数用二分类交叉熵即可。
- dssm的缺点也很明显:无法做user和item的交叉/交互特征。(可参考:新浪微博张俊林的尝试SENet,如何在双塔模型中做user和item的交叉/交互)
DSSM - 召回阶段用法
- 现在工业界的推荐系统的召回阶段基本上多路召回,比如CF召回、CB召回、语义向量召回等,DSSM召回也是语义向量召回的一种。