字节跳动 (提前批-算法工程师-电商业务) 一面面经

本文记录了一次字节跳动算法工程师面试经历,涵盖项目中概念分类、标注方法、ChatGPT的优化、模型对比(如KMeans与DBSCAN、T5与BERT)及八股基础问题,包括BERT的预训练任务、Transformer和Self-Attention等。还讨论了代码题和开放题,涉及推荐系统和负采样策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

面试情况

基本都答出来了,代码题10分钟不到秒了。

1、对简历项目提问:

1.1、介绍项目中的xx分类、xx概念分类、xx概念归一化,具体做法,为什么这么做?

1.2、标注问题,如何标注?

1.3、如何设计prompt让chatgpt得到高质量标注?

1.4、类目比较多,如何优化?

1.5、类目分类里有无对比其他模型?效果如何?

1.6、聚类算法kmeans, dbscan原理,他们的区别不仅仅是因为是否需要预先设定类别数k,为何组合他们来做归一化?

1.7、t5模型介绍,bert模型介绍,他们之间的区别?

2、八股基础提问

2.1、bert的预训练任务,mask机制介绍,为何要mask15%,15%里为何又要80%mask,10%随机替换别的token,10%不动。

  • 所谓MLM是指在训练的时候随即从输入预料上mask掉一些单词,然后通过的上下文预测该单
### 字节跳动广告算法面试经验分享 字节跳动作为一家领先的科技公司,在招聘广告算法工程师时,通常会对候选人的技术能力进行全面考察。以下是基于已有信息整理的相关经验和建议: #### 技术基础要求 候选人需要具备扎实的技术功底,尤其是在Java语言的应用上。对于Java语言的不同实现方式,应能够清晰分析其优劣并给出合理的选择依据[^1]。此外,深入理解Java虚拟机、Spring框架、多线程处理以及数据结构等内容也是必不可少的准备方向[^2]。 #### 动态规划与字符串操作 在实际面试过程中,可能会遇到涉及字符串比较的问题,比如如何通过最少次数的操作使两个字符串相同。这类题目可以通过动态规划的方法解决,即先找出两字符串间的最长公共子序列长度,之后分别计算各自需删除字符的数量得出最终结果[^4]。进一步扩展此问题,则可能被询问到具体哪些字符应当被移除,此时同样依赖于动态规划策略来确定共同部分的具体组成情况。 #### 面试技巧 面对复杂场景下的提问,保持开放态度非常重要。当被给予某个特定主题或者案例研究机会时,尽量全面阐述自己的思考过程而不是仅仅局限于表面答案。这样不仅可以展示个人解决问题的能力,还能体现良好的沟通表达水平。另外值得注意的是,在交流互动环节里主动掌控对话节奏有助于给对方留下深刻印象[^3]。 #### 失败原因反思 尽管每位求职者的经历各不相同,但从某些未成功获得录用资格的例子来看,“业务匹配度低”可能是主要原因之一[^5]。因此,在投递简历之前务必详细了解目标职位所需技能及其应用场景,并针对性地调整自我介绍材料及模拟演练重点内容。 ```python def min_operations_to_equal_strings(str1, str2): m, n = len(str1), len(str2) dp = [[0]*(n+1) for _ in range(m+1)] # Fill the DP table using bottom-up approach. for i in range(1,m+1): for j in range(1,n+1): if str1[i-1]==str2[j-1]: dp[i][j]=dp[i-1][j-1]+1 else: dp[i][j]=max(dp[i-1][j],dp[i][j-1]) lcs_length=dp[m][n] return (m-lcs_length)+(n-lcs_length) ``` 上述代码片段展示了利用动态规划方法求解最小编辑距离的一个实例。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

#苦行僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值