AI大模型探索之路-训练篇1:大语言模型微调基础认知


前言

在人工智能的广阔研究领域内,大型预训练语言模型(Large Language Models, LLMs)已经成为推动技术革新的关键因素。这些模型通过在大规模数据集上的预训练过程获得了强大的语言理解和生成能力,使其能够在多种自然语言处理任务中表现出色。然而,由于预训练过程所产生的模型通常具有泛化特性,它们往往无法直接适配到特定的应用场景和细化需求中。为了弥补这一差距,研究人员提出了微调(Fine-tuning)技术。该技术允许模型通过学习额外的、与特定任务相关的数据,从而增强其在特定领域的表现力。本文旨在从专业角度深入探讨大型AI模型微调的概念框架、方法学及其在实际应用中的重要性。
在这里插入图片描述

一、微调技术概述

微调是在预先训练的模型基础上实施的一种有监督的训练策略。为了充分理解微调的应用背景,首先需了解AI大模型的关键使用阶段。以下为AI大模型应用的核心步骤概览:

1)Prompt工程:利用精心设计的自然语言提示指导大模型执行具体任务或解决特定问题。
2)Agent开发:结合大模型的强大能力,构筑各类应用程序,如智能知识库、自助查询系统等。

3)微调:采用有监督学习的方式,基于特定任务的数据对模型进行训练,以优化其预测效果。

4)预训练:通过无监督学习,

评论 51
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值