【AI大模型前沿】MonkeyOCR:基于结构-识别-关系三元组范式的文档解析模型

系列篇章💥

No.文章
1【AI大模型前沿】深度剖析瑞智病理大模型 RuiPath:如何革新癌症病理诊断技术
2【AI大模型前沿】清华大学 CLAMP-3:多模态技术引领音乐检索新潮流
3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破
4【AI大模型前沿】阿里 QwQ-32B:320 亿参数推理大模型,性能比肩 DeepSeek-R1,免费开源
5【AI大模型前沿】TRELLIS:微软、清华、中科大联合推出的高质量3D生成模型
6【AI大模型前沿】Migician:清华、北大、华科联手打造的多图像定位大模型,一键解决安防监控与自动驾驶难题
7【AI大模型前沿】DeepSeek-V3-0324:AI 模型的全面升级与技术突破
8【AI大模型前沿】BioMedGPT-R1:清华联合水木分子打造的多模态生物医药大模型,开启智能研发新纪元
9【AI大模型前沿】DiffRhythm:西北工业大学打造的10秒铸就完整歌曲的AI歌曲生成模型
10【AI大模型前沿】R1-Omni:阿里开源全模态情感识别与强化学习的创新结合
11【AI大模型前沿】Qwen2.5-Omni:阿里巴巴的多模态大模型,实现看、听、说、写一体化
12【AI大模型前沿】SmolDocling:256M参数的轻量级多模态文档处理利器,10分钟搞定百页PDF
13【AI大模型前沿】Stable Virtual Camera:Stability AI 推出的2D图像转3D视频模型,一键生成沉浸式视频
14【AI大模型前沿】阿里 Qwen3 震撼开源,模型新王诞生,开启全球大模型新纪元
15【AI大模型前沿】InternVL:OpenGVLab开源多模态大模型,解锁视觉问答与多语言翻译的全能应用图鉴
16【AI大模型前沿】Fin-R1:上海财经大学联合财跃星辰推出的金融推理大模型,凭7B参数拿下评测第二,离行业第一仅差3分
17【AI大模型前沿】Med-R1:基于强化学习的医疗视觉语言模型,突破跨模态医学推理的普适性
18【AI大模型前沿】Baichuan-M1-14B:百川智能推出专为医疗优化的开源大语言模型
19【AI大模型前沿】一键生成宫崎骏动画风,EasyControl Ghibli 让照片秒变吉卜力艺术品
20【AI大模型前沿】TxGemma:谷歌推出的高效药物研发大模型,临床试验预测准确率超90%
21【AI大模型前沿】F5R-TTS:腾讯推出TTS领域的新王者,又快又准又自然,零样本语音克隆新高度
22【AI大模型前沿】MiniMind-V:低成本打造超小多模态视觉语言模型(仅需1.3元人民币和1小时)
23【AI大模型前沿】MoCha:端到端对话角色视频生成模型、电影级对话角色合成黑科技、重新定义动画创作
24【AI大模型前沿】HuatuoGPT-o1-7B:中英文双语医学推理,打破语言障碍的AI大模型
25【AI大模型前沿】MedReason:大规模医学推理数据集、借用知识图谱将大模型打造成“医术”专家
26【AI大模型前沿】SkyReels-V2:昆仑万维开源的无限时长电影生成模型,开启视频生成新纪元
27【AI大模型前沿】Dia:Nari Labs开源16亿参数TTS模型,只需文本输入,生成媲美真人对话的语音
28【AI大模型前沿】阿里巴巴开源LHM:单图生成可动画3D人体模型,开启3D建模新纪元
29【AI大模型前沿】TinyLLaVA-Video-R1:北航开源视频推理模型、小尺寸大智慧、参数少一半,性能翻一番
30【AI大模型前沿】TTRL:测试时强化学习,开启无标签数据推理新篇章
31【AI大模型前沿】Aero-1-Audio:Qwen2.5架构加持,轻量级音频模型天花板、吊打Whisper
32【AI大模型前沿】DianJin-R1:阿里云通义点金联合苏大推出的金融推理增强大模型
33【AI大模型前沿】VITA-Audio:腾讯开源的高效语音交互多模态大语言模型
34【AI大模型前沿】Multiverse:全球首个AI多人游戏世界模型,低成本高效率新突破
35【AI大模型前沿】Seed1.5-VL:多模态理解的效率革新者,以小博大,性能惊艳
36【AI大模型前沿】ViLAMP:蚂蚁集团和人民大学联手打造的长视频理解利器,单卡处理3小时视频
37【AI大模型前沿】Muyan-TTS:开源零样本语音合成模型、0.33秒极速生成播客级语音、小白也能玩转AI配音
38【AI大模型前沿】Dolphin:字节跳动开源文档解析大模型,轻量级、高效、多格式,开启文档处理新时代
39【AI大模型前沿】ChatTS:字节跳动联合清华大学开源、多模态时序大模型助力时序数据对话与推理
40【AI大模型前沿】Index-AniSora:B站开源的动漫视频生成模型,助力高效创作
41【AI大模型前沿】RelightVid:上海 AI Lab联合复旦等高校推出的视频重照明模型
42【AI大模型前沿】BAGEL:字节跳动开源、多模态大模型的创新突破与实践指南
43【AI大模型前沿】Matrix-Game:昆仑万维开源大模型,一键生成你的专属虚拟世界
44【AI大模型前沿】Pixel Reasoner:滑铁卢联合港科大等高校推出的视觉语言模型,助力视觉推理新突破
45【AI大模型前沿】CoGenAV:多模态语音表征新范式、通义联合深技大打造、噪声环境WER降低70%+
46【AI大模型前沿】Ming-Lite-Omni:蚂蚁集团开源的统一多模态大模型的创新实践
47【AI大模型前沿】DeepEyes:小红书与西安交大联合打造的多模态深度思考模型
48【AI大模型前沿】OmniAudio:阿里通义实验室的空间音频生成模型,开启沉浸式体验新时代
49【AI大模型前沿】MiniCPM 4.0:面壁智能开源的极致高效端侧大模型(小版本、低消耗、220倍极致提速)
50【AI大模型前沿】SmolVLA:Hugging Face开源的轻量级视觉-语言-行动机器人模型
51【AI大模型前沿】Time-R1:伊利诺伊大学香槟分校开源的时间推理语言模型、实现过去→未来全链路推演
52【AI大模型前沿】MonkeyOCR:基于结构-识别-关系三元组范式的文档解析模型


前言

随着人工智能技术的快速发展,文档解析作为自然语言处理和计算机视觉领域的关键任务,正逐步从传统的规则引擎和启发式方法向深度学习模型演进。文档解析的目标是将文档中的文本、表格、公式、图像等内容进行结构化识别和语义理解,从而实现信息的高效提取与处理。然而,现有方法在准确性和效率之间往往难以取得平衡,尤其是在处理多语言、多格式、多模态的复杂文档时,面临诸多挑战。

为了解决这些问题,本文介绍了一种名为 MonkeyOCR 的新型文档解析模型,其核心创新在于采用 Structure-Recognition-Relation (SRR) 三元组范式该范式通过将文档解析任务分解为三个核心问题——“结构在哪里?”、“内容是什么?”、“它们如何组织?”——实现了对文档内容的高效、精准解析。与传统的流水线方法和端到端模型相比,MonkeyOCR 在多个方面展现出显著优势,包括更高的解析精度、更快的处理速度以及更广泛的适用性。

一、项目概述

MonkeyOCR 是一个基于 Structure-Recognition-Relation (SRR) 三元组范式 的文档解析模型,旨在通过结构检测、内容识别和关系预测三个阶段,实现对文档的高效、精准解析。该模型在多个中文和英文文档类型上均表现出色,尤其在表格、公式等复杂内容的识别上,相比现有方法有显著提升。此外,MonkeyOCR 支持多页文档的快速解析,推理速度达到 0.84 页/秒,远超其他主流模型。

在这里插入图片描述


二、技术原理

(一)SRR 三元组范式

MonkeyOCR 的核心思想是将文档解析任务分解为三个关键步骤:

  1. 结构检测(Structure Detection) :通过布局分析,识别文档中的各个区域(如文本块、表格、公式、图像等),并为其分配类别标签和边界框坐标。
  2. 内容识别(Recognition) :对每个检测到的区域进行内容识别,包括文本、表格、公式等,使用统一的多模态大模型(LMM)进行识别。
  3. 关系预测(Relation Prediction) :预测各个区域之间的逻辑关系,重建文档的结构化内容,确保输出的语义一致性。

这种三元组范式有效结合了流水线方法的模块化优势和端到端方法的全局优化能力,既保证了解析的准确性,又提升了处理效率。

(二)MonkeyDoc 数据集

为了支持 MonkeyOCR 的训练和评估,研究团队开发了 MonkeyDoc,这是目前最全面的文档解析数据集之一。MonkeyDoc 包含 390 万个块级实例,涵盖超过 10 种文档类型,支持中英文双语标注。数据集的构建过程包括:

  • 结构检测:从多个公开数据集中提取并统一标注,补充合成高质量中文样本。
  • 内容识别:通过自动标注和人工校验,确保文本、表格、公式等的识别准确。
  • 关系预测:通过多任务学习和模型辅助策略,建立区域之间的逻辑关系。

MonkeyDoc 的多任务、多语言、多领域的覆盖能力,为模型的泛化训练提供了坚实基础。


三、主要功能

(一)多语言支持

MonkeyOCR 支持中英文双语文档的解析,能够处理中文和英文的文本、表格、公式等复杂内容。对于中文场景,还可以使用专门的结构检测模型 layout_zh.pt 来提高识别效果。

(二)多格式支持

模型支持对 PDF、图像等多种格式的文档进行解析。用户可以通过命令行或 Gradio 界面上传文件,并获取结构化输出。

(三)高精度识别

在多个基准测试中,MonkeyOCR 在表格识别、公式识别等任务上表现优异。例如,相比 MinerU,MonkeyOCR 在表格识别任务上的 TEDS(Textual Edit Distance)提升了 8.6%,在公式识别任务上的 CDM(Correct Document Match)提升了 15.0%。

(四)快速部署

MonkeyOCR 支持多种部署方式,包括命令行工具、 Docker 容器和 FastAPI 服务。用户可以根据需求选择合适的部署方案,快速启动模型并进行测试。


四、基准测试

为了验证MonkeyOCR的有效性,官方在OmniDocBench上对其与开源和闭源方法进行了全面比较。OmniDocBench是一个用于评估真实世界文档解析能力的基准测试,包含981个PDF页面,涵盖9种文档类型、4种布局风格和3种语言类别。通过这个基准测试,我们能够对MonkeyOCR的文档解析能力进行全面评估。
在这里插入图片描述

为了进一步评估MonkeyOCR处理不同类型文档的能力,官方在OmniDocBench基准测试中对九类文档进行了全面比较。如下图所示,MonkeyOCR在所有九类文档中均取得了最佳的整体性能。

五、应用场景

(一)电子书与学术论文

MonkeyOCR 可用于电子书、学术论文等复杂文档的结构化解析,帮助研究人员快速提取关键信息,提升文献管理效率。

(二)企业文档处理

在企业环境中,MonkeyOCR 可用于自动化处理合同、财务报告、会议纪要等文档,提高文档处理的效率和准确性。

(三)教育与考试系统

在教育领域,MonkeyOCR 可用于自动解析学生作业、考试试卷等,辅助教师进行批改和分析。

(四)医疗与法律文档

在医疗和法律领域,MonkeyOCR 可用于解析病历、法律文书等,确保信息的准确性和可追溯性。


六、快速使用

(一)环境准备

首先,安装必要的依赖库:

# 创建conda环境
conda create -n MonkeyOCR python=3.10
conda activate MonkeyOCR

# 克隆代码
git clone https://github.com/Yuliang-Liu/MonkeyOCR.git
cd MonkeyOCR

# 安装依赖
# Install pytorch, see https://pytorch.org/get-started/previous-versions/ for your cuda version
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124 
pip install -e .

(二)下载模型

从 HuggingFace 下载 MonkeyOCR 模型:

pip install huggingface_hub
python tools/download_model.py  # 自动下载HuggingFace预训练权重

(三)模型推理

使用以下命令进行模型推理:

# 在MonkeyOCR目录下运行
python parse.py path/to/your.pdf

# 或者使用图片作为输入
pyhton parse.py path/to/your/image

# 指定输出路径和模型配置文件路径
python parse.py path/to/your.pdf -o ./output -c config.yaml

(四)Gradio 界面

启动 Gradio 界面,上传 PDF 或图像进行解析:

cd demo
python demo_gradio.py

七、结语

MonkeyOCR 是一个基于 SRR 三元组范式的创新文档解析模型,通过结构检测、内容识别和关系预测三个阶段,实现了对复杂文档的高效、精准解析。在多个基准测试中,MonkeyOCR 表现出色,尤其在表格和公式识别任务上优于现有方法。未来,研究团队将继续优化模型性能,提升多语言支持,并探索更多应用场景。

八、项目地址

  • 开源仓库:https://github.com/Yuliang-Liu/MonkeyOCR
  • 模型地址:https://huggingface.co/echo840/MonkeyOCR
  • 技术论文:https://arxiv.org/abs/2506.05218
  • 在线体验:http://vlrlabmonkey.xyz:7685

在这里插入图片描述

🎯🔖更多专栏系列文章:AI大模型提示工程完全指南AI大模型探索之路(零基础入门)AI大模型预训练微调进阶AI大模型开源精选实践AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑

😎 作者介绍:资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索(CSDN博客之星|AIGC领域优质创作者)
📖专属社群:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,回复‘入群’ 即刻上车,获取邀请链接。
💘领取三大专属福利:1️⃣免费赠送AI+编程📚500本,2️⃣AI技术教程副业资料1套,3️⃣DeepSeek资料教程1套🔥(限前500人)
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我们,一起携手同行AI的探索之旅,开启智能时代的大门!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值