【性能分析】ncu Metric Name解释

ncu日志中各个指标名称(Metric Name)的含义解释:

Section: GPU Speed Of Light Throughput

这部分测量了 GPU 内核执行时的性能指标,主要关注 GPU 计算单元和存储单元的吞吐量。

  1. DRAM Frequency:

    • 单位:cycle/nsecond
    • 含义:显存(DRAM)的工作频率,表示每纳秒内的时钟周期数。
  2. SM Frequency:

    • 单位:cycle/nsecond
    • 含义:流式多处理器(SM, Streaming Multiprocessor)的工作频率,表示每纳秒内的时钟周期数。
  3. Elapsed Cycles:

    • 单位:cycle
    • 含义:从内核启动到完成所经过的 GPU 时钟周期数。
  4. Memory Throughput:

    • 单位:%
    • 含义:相对于 GPU 的最大带宽,内核在显存(DRAM)和其他存储
### CUDA算子在Ubuntu系统的性能分析工具和方法 对于CUDA算子在Ubuntu系统上的性能分析,可以采用多种工具和技术来评估不同方面的性能表现。以下是几种常用的工具及其应用方式: #### 使用NVIDIA官方提供的Nsight系列工具 Nsight Compute 和 Nsight Systems 是 NVIDIA 提供的强大命令行工具集,用于深入剖析 GPU 应用程序的行为。 - **Nsight Compute** 主要关注于单个内核级别的性能特征测量,能够提供详细的计数器数据以及建议优化方向[^1]。 ```bash nsys profile ./your_cuda_application ``` - **Nsight Systems** 则更侧重全局视角下的软件栈交互情况,适合用来查找瓶颈所在并理解整个应用程序的工作流程。 ```bash ncu --metrics sm__cycles_elapsed.avg ./your_cuda_application ``` #### 集成到Python环境中的Cupti库 如果开发环境中大量依赖 Python,则可以通过 PyProf 或者其他基于 CUPTI (CUDA Profiling Tools Interface) 的包来进行更加灵活便捷的操作。这类接口允许开发者编写自定义的监控逻辑,在不影响原有业务代码结构的前提下实现细粒度跟踪。 ```python import torch from pyprof import profiler with profiler.profile(): output = model(input_tensor) ``` #### 基础设施层面的支持——Docker容器化部署 为了确保测试条件的一致性和可重复性,推荐利用 Docker 容器技术封装好所需的运行时环境。这不仅有助于快速搭建实验平台,还能有效隔离各个项目之间的相互干扰[^2]。 ```dockerfile FROM nvidia/cuda:11.0-base WORKDIR /app COPY . . RUN apt-get update && \ apt-get install -y python3-pip && \ pip3 install --upgrade pip setuptools wheel && \ pip3 install -r requirements.txt CMD ["python", "./main.py"] ``` 通过上述手段组合运用,可以从多个角度全面掌握 CUDA 算子的实际执行效率,并据此作出针对性改进措施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arthur.AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值