三、背包问题

本文详细介绍了背包问题的四种类型:01 背包、完全背包、多重背包和分组背包,以及各自的应用场景。通过动态规划解决背包问题的核心在于找到状态转移方程,例如 01 背包的状态转移公式 `dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i])`。文章还列举了多个具体的实例,如零钱兑换、分割等和子集和给墙壁刷油漆等,展示了背包问题在实际问题中的应用。" 101714955,5642611,Python内置函数与模块详解,"['Python', '函数', '模块', '语法', '数据处理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背包问题 (Knapsack problem

背包问题 Knapsack problem

动态规划 是运筹学的一种最优化方法,核心是 穷举
存在「重叠子问题」、具备「最优子结构」(子问题互相独立)和「无后效性」。

递归解法「自顶向下」;动态规划「自底向上」dp 数组的 迭代解法

背包问题是经典的「动态规划」,本质上属于 组合优化的「 NP完全问题」,「无法直接求解」的问题,只能通过 「穷举」+「验证」 的方式进行求解。

视频

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值