【NLP】斯密斯-沃特曼的对齐算法(python)

210 篇文章 ¥29.90 ¥99.00
本文介绍了Smith-Waterman算法在局部序列对齐中的应用,特别是在生物技术和自然语言处理中的串比较问题。详细讲解了评分矩阵的计算、回溯过程以及如何获取序列的起始和结束位置。同时,提供了Python代码实现,并提到了swalign包的安装和使用,以进行Smith-Waterman风格的局部对齐。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、说明

         在生物技术中,需要用到局部序列对齐 (LSA),所以使用 Smith-Waterman 算法在较长的子字符串 a 中找到部分匹配的子字符串 b。同样,在NLP中,也存在串比较问题,比如语音序列。因为这里用 Python 编码的,所以我们确信已经有很多实现可以使用了。我确实找到了一些代码,然而,有些实现是不完整的,这里拿来一个可以跑通的。我没有测试第二个实现,留给读者实现。

        因此,我开始了自己实现定位。我想要的是一些易于使用的功能,比如

    start, end = smith_waterman(string_a, string_b)

        找出某些版本的 string_b(包括间隙和删除)在 string_a 中的开始和结束位置。

1.1 实现评分矩阵(Scoring matrix)

        为了找到 b 与 a 的局部对齐,Smith-Waterman 首先计算评分矩阵。以下代码使用线性间隙成本为两个字符串 a 和 b 计算此矩阵。出于性能原因,我选择了 NumP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值