深度学习环境搭建Windows+ TensorFlow 2.6.0 GPU 版

214 篇文章 ¥49.90 ¥99.00

本章教程介绍如何在Windows上安装配置TensorFlow GPU.
开始之前,请确保电脑上有NVIDIA显卡驱动。
检查方法有三种,如果有NVIDIA显卡,尽量把显卡更新到最新版本。
第一种:运行cmd运行对话框,通过nvidia-smi命令去验证。(需要安装过显卡驱动的才能正常显示。)
第二种:打开任务管理器,切换到性能面板,在左侧看是否有NVIDIA GPU。(需要安装过显卡驱动的才能正常显示。)
第三种:打开设备管理器,找到显示适配器选项,如果里面包含NVIDIA驱动就代表当前电脑有NVIDIA显卡。

在这里插入图片描述

一、基础环境搭建

安装conda环境,可以选择Anaconda或者Miniconda。
通过conda创建一个python3.9的虚拟环境。

conda create -n tf39 python=3.9 
### 安装与配置步骤 #### 1. 系统准备 在Windows 11上配置深度学习开发环境,首先需要确保系统满足基本要求。建议使用Windows 11 64位操作系统,并确保安装了最新的系统更新。如果使用NVIDIA GPU进行加速,需安装NVIDIA显卡驱动程序,推荐使用NVIDIA官方提供的驱动程序,并确保其本与CUDA兼容[^1]。 #### 2. 安装Python Python是深度学习领域最常用的编程语言之一。推荐使用Python 3.9本,因为它与大多数深度学习框架兼容性良好。可以使用`conda`或`pip`进行安装。例如,使用`conda`创建一个虚拟环境: ```bash conda create -n dl_env python=3.9 conda activate dl_env ``` 如果使用`pip`安装,则可以使用以下命令: ```bash python -m venv dl_env source dl_env/bin/activate # Windows上使用 `dl_env\Scripts\activate` pip install --upgrade pip ``` #### 3. 安装CUDA和cuDNN 如果计划使用NVIDIA GPU进行深度学习计算,需要安装CUDA Toolkit和cuDNN库。根据所使用的深度学习框架本选择合适的CUDA和cuDNN本。例如,PyTorch 1.11.0推荐使用CUDA 11.3.0和cuDNN 8.2.1[^1]。可以从NVIDIA官方网站下载并安装这些工具包。 #### 4. 安装深度学习框架 根据需求选择合适的深度学习框架,如TensorFlow或PyTorch。以下是安装TensorFlow和PyTorch的示例命令: **TensorFlow GPU本安装:** ```bash pip install tensorflow-gpu==2.6.0 ``` **PyTorch GPU本安装:** ```bash pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113 ``` #### 5. 验证安装 安装完成后,可以通过运行简单的测试代码来验证安装是否成功。 **TensorFlow验证:** ```python import tensorflow as tf print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU'))) ``` **PyTorch验证:** ```python import torch print(torch.cuda.is_available()) ``` #### 6. 安装其他工具 为了提高开发效率,可以安装一些常用的开发工具和库,如Jupyter Notebook、NumPy、Pandas等: ```bash pip install jupyter numpy pandas ``` #### 7. 环境维护 定期更新环境中的包以保持最新状态,可以使用以下命令: ```bash conda update --all pip list --outdated ``` 对于NVIDIA驱动程序的检查,可以使用以下命令: ```bash nvidia-smi --query-gpu=driver_version --format=csv ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Roc-xb

真诚赞赏,手留余香

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值