【题目描述】
某个局域网内有n(n≤100)台计算机,由于搭建局域网时工作人员的疏忽,现在局域网内的连接形成了回路,我们知道如果局域网形成回路那么数据将不停的在回路内传输,造成网络卡的现象。因为连接计算机的网线本身不同,所以有一些连线不是很畅通,我们用f(i,j)表示i,j之间连接的畅通程度(f(i,j)≤1000),f(i,j)值越小表示i,j之间连接越通畅,f(i,j)为0表示i,j之间无网线连接。现在我们需要解决回路问题,我们将除去一些连线,使得网络中没有回路,并且被除去网线的Σf(i,j)最大,请求出这个最大值。
【输入】
第一行两个正整数n,k
接下来的k行每行三个正整数i,j,m表示i,j两台计算机之间有网线联通,通畅程度为m。
【输出】
一个正整数,Σf(i,j)的最大值。
【输入样例】
5 5
1 2 8
1 3 1
1 5 3
2 4 5
3 4 2
【输出样例】
8
分析
- 此题比较重要的突破口就是转化(逆向思维),将求移走回路的最大值转化为:距离总和减去最小生成树的权值和,也就是根据题目提供的边构造一个最小生成树即没有回路,也让权值和minans达到最小,然后输入的距离和sum减去minans即可;
- Kruskal算法比较简单,并查集思想,参考:1350:【例4-11】最短网络(agrinet)——Kruskal算法,需要注意两个初始化:初始化表示祖先的f数组,以及存储边的的数组e,就其按照dis排序;
- Prim算法也是可以求最小生成树的,有点像最短路的Dijstra算法,个人认为没有Kruskal写得快,可能还是不熟练,Prim用在稠密图、Kruskal用在稀疏图;Prim算法参考:1349:【例4-10】最优布线问题——Prim算法;也不能忘了两个初始化,存边的g数组,以及存最短距离的dist数组;
Kruskal算法
#include<bits/stdc++.h>
using namespace std;
struct edge {
int u, v, dis;
};
bool cmp(edge a, edge b) {
return a.dis < b.dis;
}
const int N = 110;
edge e[N];
int f[N];
int n, k, idx, minans, sum;
int find(int x) {
if (x == f[x])
return x;
return f[x] = find(f[x]);
}
void merge(int x, int y) {
x = find(x);
y = find(y);
f[x] = y;
}
void kruskal() {
for (int i = 1; i <= k; ++i) {
int u = e[i].u, v = e[i].v, dis = e[i].dis;
if (find(u) != find(v)) {
merge(u, v);
minans += dis;//累加最短距离
}
}
}
int main() {
cin.tie(0);
cin >> n >> k;
for (int i = 1; i <= k; ++i) {
cin >> e[++idx].u >> e[idx].v >> e[idx].dis;
sum += e[idx].dis;
}
//两个初始化不能忘
sort(e + 1, e + 1 + k, cmp);
for (int i = 1; i <= n; ++i) {
f[i] = i;
}
kruskal();
//总距离减去构成最小生成树的最小权值和,即是想求得最大值
cout << sum - minans;
}
Prim算法
#include<bits/stdc++.h>
using namespace std;
const int N = 110, INF = 0x3f3f3f3f;
int n, k, minans, sum;
int g[N][N];
int dist[N];//每个点距离最小生成树的最短距离
int st[N];
void prim() {
memset(dist, INF, sizeof dist);
//n次迭代
for (int i = 0; i < n; ++i) {
int t = -1;
for (int j = 1; j <= n; ++j) {
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
}
// 如果当前不是第一个点的话,并且dist[t]等于正无穷的话,即当前距离最近的点到集合都是正无穷,说明当前图不连通的
if (i && dist[t] == INF)
return;
//累加权值(当i为0,说明为第一个结点,生成树至少要有一个结点,i=0时dist[t]=INF,不累加)
if (i)
minans += dist[t];
st[t] = 1;
//用t更新其他点到最小生成树的距离
for (int j = 1; j <= n; ++j) {
//区分dijkstra:dist[j] = min(dist[j], dist[t] + g[t][j]);
// g[j][t]为当前j到生成树中的t的距离
dist[j] = min(dist[j], g[j][t]);
}
}
}
int main() {
cin.tie(0);
cin >> n >> k;
//不能忘
memset(g, INF, sizeof g);
for (int i = 1; i <= k; ++i) {
int a, b, c;
cin >> a >> b >> c;
g[a][b] = g[b][a] = c;
sum += c;
}
prim();
//总距离减去构成最小生成树的最小权值和,即是想求得最大值
cout << sum - minans;
}