1284:摘花生——数字三角形模型

该问题是一个典型的动态规划问题,HelloKitty在矩形网格中向东或向南行走,目标是最大化摘取的花生数量。每一步的最大收益是当前位置的花生数加上来自上一步或左一步的最大收益。程序通过读取输入数据,计算每一步的最大收益,最终输出HelloKitty能摘到的最多花生数。

【题目描述】
Hello Kitty想摘点花生送给她喜欢的米老鼠。她来到一片有网格状道路的矩形花生地(如下图),从西北角进去,东南角出来。地里每个道路的交叉点上都有种着一株花生苗,上面有若干颗花生,经过一株花生苗就能摘走该它上面所有的花生。Hello Kitty只能向东或向南走,不能向西或向北走。问Hello Kitty最多能够摘到多少颗花生。
在这里插入图片描述

【输入】
第一行是一个整数T,代表一共有多少组数据。1≤T≤100
接下来是T组数据。

每组数据的第一行是两个整数,分别代表花生苗的行数R和列数 C(1≤R,C≤100)
每组数据的接下来R行数据,从北向南依次描述每行花生苗的情况。每行数据有C个整数,按从西向东的顺序描述了该行每株花生苗上的花生数目M(0≤M≤1000)。

【输出】
对每组输入数据,输出一行,内容为Hello Kitty能摘到得最多的花生颗数。

【输入样例】
2
2 2
1 1
3 4
2 3
2 3 4
1 6 5
【输出样例】
8
16

分析

和数字三角形题一样,每个位置的当前状态来自于上一个状态,且上一状态有两种情况,取最大;
在这里插入图片描述

#include<bits/stdc++.h>

using namespace std;

const int N = 110;

int n, m;
int a[N][N];
int f[N][N];

int main() {
    int t;
    cin >> t;
    while (t--) {
        cin >> n >> m;
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= m; ++j) {
                cin >> a[i][j];
            }
        }
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= m; ++j) {
                f[i][j] = max(f[i - 1][j] + a[i][j], f[i][j - 1] + a[i][j]);
            }
        }
        cout << f[n][m] << endl;
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上的yyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值