LeetCode 53. 最大子序和

本文介绍了一种利用动态规划解决最大子序和问题的方法。通过维护一个局部变量来跟踪连续子数组的最大和,当该变量为负时将其重置为当前元素,为正时则继续累加。最终,通过比较局部变量与全局已扫描子数组的最大和,得到题目答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:53. 最大子序和

类别:动态规划

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

解题思路:

运用动态规划的思想进行求解,即取一局部变量记录当前连续元素的最大和,且当此变量为负时,说明就算再加上下一个元素,也只会时下一元素减小,所以此时应当将此局部变量设为当前元素值,若此变量为正时说明再增加一个元素时仍会将值增大,所以继续增加,最后取此时的局部变量和全局中已扫描过的子数组中的最大和的最大值。

代码:

    int maxSubArray(vector<int>& nums) {
        
        int sum = nums[0]; int cur = 0;
        int size = nums.size();
        
        for(int i = 0; i < size; i++){
            
            if(cur > 0) cur += nums[i];
            else cur = nums[i];
            sum = max(cur, sum);
        }
        
        return sum;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值