GEE:梯度提升树(Gradient Boosting Tree)分类教程(样本制作、特征添加、训练、精度、参数优化、贡献度、统计面积)

本文提供Google Earth Engine (GEE)上梯度提升树分类的详细教程,涵盖样本制作、特征添加、模型训练、精度评估、参数优化、特征贡献度分析及面积统计等内容。适用于土地利用、植被、农作物识别等多种分类任务。

作者:CSDN @ _养乐多_

本文将介绍在Google Earth Engine (GEE)平台上进行梯度提升树(Gradient Boosting Tree)分类的方法和代码,其中包括制作样本点教程(本地、在线和本地在线混合制作样本点,合并样本点等),加入特征变量(各种指数、纹理特征、时间序列特征、物候特征等),运行梯度提升树分类器教程,并可将分类器模型应用于像素尺度或者超像素(对象/斑块)尺度数据,计算梯度提升树分类结果的精度(精度参数以csv格式下载到本地),优化梯度提升树分类算法的参数(绘制最优参数分布图),打印各个变量特征的贡献度(排序特征贡献度,并绘制柱状图)、统计每一类地类的面积等步骤的方法和代码。

本教程可以应用于多种分类场景,包括土地利用/覆盖分类、种植区提取(大蒜、小麦、玉米等)、局部气候区分类、植被分类、森林/草原分类、疾病/虫害分类、洪水预测等多种场景。

梯度提升树(Gradient Boosting Tree)分类过程和分类结果如下图所示
————————————————————————————————————————————————
在这里插入图片描述



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_养乐多_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值