Spark(8):RDD行动算子

文章详细介绍了Spark中RDD的一系列核心操作,包括reduce用于元素聚合,collect将数据收集到Driver端,count计算元素数量,first获取第一个元素,take和takeOrdered分别获取指定数量的元素,aggregate和fold进行数据聚合,countByKey统计key的数量,以及save相关算子用于数据持久化,最后是foreach用于分布式遍历RDD元素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

0. 相关文章链接

1. reduce

2. collect

3. count

4. first

5. take

6. takeOrdered

7. aggregate

8. fold

9. countByKey

10. save 相关算子

11. foreach


0. 相关文章链接

 Spark文章汇总 

1. reduce

  • 函数签名:def reduce(f: (T, T) => T): T
  • 函数说明:聚集 RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))

// 聚合数据
val reduceResult: Int = rdd.reduce(_+_)

2. collect

  • 函数签名:def collect(): Array[T]
  • 函数说明:在驱动程序中,以数组 Array 的形式返回数据集的所有元素
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))

// 收集数据到 Driver
rdd.collect().foreach(println)

3. count

  • 函数签名:def count(): Long
  • 函数说明:返回 RDD 中元素的个数
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))

// 返回 RDD 中元素的个数
val countResult: Long = rdd.count()

4. first

  • 函数签名:def first(): T
  • 函数说明:返回 RDD 中的第一个元素
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))

// 返回 RDD 中元素的个数
val firstResult: Int = rdd.first()
println(firstResult)

5. take

  • 函数签名:def take(num: Int): Array[T]
  • 函数说明:返回一个由 RDD 的前 n 个元素组成的数组
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))

// 返回 RDD 中元素的个数
val takeResult: Array[Int] = rdd.take(2)
println(takeResult.mkString(","))

6. takeOrdered

  • 函数签名:def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]
  • 函数说明:返回该 RDD 排序后的前 n 个元素组成的数组
val rdd: RDD[Int] = sc.makeRDD(List(1,3,2,4))

// 返回 RDD 中元素的个数
val result: Array[Int] = rdd.takeOrdered(2)

7. aggregate

  • 函数签名:def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U
  • 函数说明:分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4), 8)

// 将该 RDD 所有元素相加得到结果
//val result: Int = rdd.aggregate(0)(_ + _, _ + _)
val result: Int = rdd.aggregate(10)(_ + _, _ + _)

8. fold

  • 函数签名:def fold(zeroValue: T)(op: (T, T) => T): T
  • 函数说明:折叠操作, aggregate 的简化版操作
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
val foldResult: Int = rdd.fold(0)(_+_)

9. countByKey

  • 函数签名:def countByKey(): Map[K, Long]
  • 函数说明:统计每种 key 的个数
val rdd: RDD[(Int, String)] = sc.makeRDD(List((1, "a"), (1, "a"), (1, "a"), (2,"b"), (3, "c"), (3, "c")))
// 统计每种 key 的个数
val result: collection.Map[Int, Long] = rdd.countByKey()

10. save 相关算子

  • 函数签名:
def saveAsTextFile(path: String): Unit
def saveAsObjectFile(path: String): Unit
def saveAsSequenceFile(
    path: String,
    codec: Option[Class[_ <: CompressionCodec]] = None
): Unit
  • 函数说明:将数据保存到不同格式的文件中
// 保存成 Text 文件
rdd.saveAsTextFile("output")

// 序列化成对象保存到文件
rdd.saveAsObjectFile("output1")

// 保存成 Sequencefile 文件
rdd.map((_,1)).saveAsSequenceFile("output2")

11. foreach

  • 函数签名:
def foreach(f: T => Unit): Unit = withScope {
    val cleanF = sc.clean(f)
    sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}
  • 函数说明:分布式遍历 RDD 中的每一个元素,调用指定函数
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))

// 收集后打印
rdd.map(num=>num).collect().foreach(println)

println("****************")

// 分布式打印
rdd.foreach(println)

注:其他Spark相关系列文章链接由此进 ->  Spark文章汇总 


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电光闪烁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值