Spark(12):RDD文件读取与保存

文章详细介绍了Spark中数据源的划分,包括text文件的读取与保存,sequence文件作为Hadoop的二进制key-value对存储方式,以及object对象文件的序列化操作。通过示例代码展示了如何使用Spark进行这些操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

0. 相关文章链接

1. Spark数据源划分

2. text文件

3. sequence 文件

4. object 对象文件


0. 相关文章链接

 Spark文章汇总 

1. Spark数据源划分

Spark 的数据读取及数据保存可以从两个维度来作区分:文件格式以及文件系统:

  • 文件格式分为:text 文件、csv 文件、sequence文件以及 Object 文件;
  • 文件系统分为:本地文件系统、HDFS、HBASE 以及数据库;

2. text文件

// 读取输入文件 
val inputRDD: RDD[String] = sc.textFile("input/1.txt") 
 
// 保存数据 
inputRDD.saveAsTextFile("output") 

3. sequence 文件

SequenceFile 文件是 Hadoop 用来存储二进制形式的 key-value 对而设计的一种平面文件(Flat 
File)。在 SparkContext 中,可以调用 sequenceFile[keyClass, valueClass](path)。 

// 保存数据为SequenceFile 
dataRDD.saveAsSequenceFile("output") 
 
// 读取SequenceFile文件 
sc.sequenceFile[Int,Int]("output").collect().foreach(println) 

4. object 对象文件

object 对象文件对象文件是将对象序列化后保存的文件,采用 Java 的序列化机制。可以通过objectFile[T: ClassTag](path)函数接收一个路径,读取对象文件,返回对应的 RDD,也可以通过调用 saveAsObjectFile()实现对对象文件的输出。因为是序列化所以要指定类型。 

// 保存数据 
dataRDD.saveAsObjectFile("output") 
 
// 读取数据 
sc.objectFile[Int]("output").collect().foreach(println) 

注:其他Spark相关系列文章链接由此进 ->  Spark文章汇总 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电光闪烁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值