目录
0. 相关文章链接
1. Spark数据源划分
Spark 的数据读取及数据保存可以从两个维度来作区分:文件格式以及文件系统:
- 文件格式分为:text 文件、csv 文件、sequence文件以及 Object 文件;
- 文件系统分为:本地文件系统、HDFS、HBASE 以及数据库;
2. text文件
// 读取输入文件
val inputRDD: RDD[String] = sc.textFile("input/1.txt")
// 保存数据
inputRDD.saveAsTextFile("output")
3. sequence 文件
SequenceFile 文件是 Hadoop 用来存储二进制形式的 key-value 对而设计的一种平面文件(Flat
File)。在 SparkContext 中,可以调用 sequenceFile[keyClass, valueClass](path)。
// 保存数据为SequenceFile
dataRDD.saveAsSequenceFile("output")
// 读取SequenceFile文件
sc.sequenceFile[Int,Int]("output").collect().foreach(println)
4. object 对象文件
object 对象文件对象文件是将对象序列化后保存的文件,采用 Java 的序列化机制。可以通过objectFile[T: ClassTag](path)函数接收一个路径,读取对象文件,返回对应的 RDD,也可以通过调用 saveAsObjectFile()实现对对象文件的输出。因为是序列化所以要指定类型。
// 保存数据
dataRDD.saveAsObjectFile("output")
// 读取数据
sc.objectFile[Int]("output").collect().foreach(println)
注:其他Spark相关系列文章链接由此进 -> Spark文章汇总