LeetCode 69. x 的平方根

本文介绍了计算非负整数x的平方根的两种方法:牛顿迭代法和二分法。通过具体示例展示了如何逐步逼近精确结果,并提供源代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

69. x 的平方根

https://leetcode-cn.com/problems/sqrtx/solution/x-de-ping-fang-gen-by-leetcode-solution/

实现 int sqrt(int x) 函数。

计算并返回 x 的平方根,其中 x 是非负整数。

由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。

示例 1:

输入: 4
输出: 2

示例 2:

输入: 8
输出: 2

说明: 8 的平方根是 2.82842…,
由于返回类型是整数,小数部分将被舍去。

题解

方法一:牛顿迭代法

下面这种方法可以很有效地求出根号 aa 的近似值:首先随便猜一个近似值 xx,然后不断令 xx 等于 xx 和 a/xa/x 的平均数,迭代个六七次后 xx 的值就已经相当精确了。

例如,我想求根号 22 等于多少。假如我猜测的结果为 44,虽然错的离谱,但你可以看到使用牛顿迭代法后这个值很快就趋近于根号 22 了:

( 4 + 2/ 4 ) / 2 = 2.25

( 2.25 + 2/ 2.25 ) / 2 = 1.56944…

( 1.56944…+ 2/1.56944…) / 2 = 1.42189…

( 1.42189…+ 2/1.42189…) / 2 = 1.41423…

….

如果所示:
在这里插入图片描述

在这里插入图片描述

代码

(ps:一开始不要脸的写了个math中的 sqrt函数 看了大佬写的题解,感觉几年数学白学 T^T)

class Solution {
public:
    int s;
    int mySqrt(int x) {
        s=x;
        if(x==0) 
            return 0;
        return ((int)(Sqrt(x)));
    }
    double Sqrt(double x){
        double res=(x+s/x)/2;
        if(res==x)
            return x;
        else
            return Sqrt(res);
    }
};

简写:

int mySqrt(int a) {
	long x = a;
	while (x * x > a) {
		x = (x + a / x) / 2;
	}
	return x;
}

方法二:二分法

在这里插入图片描述

int mySqrt(int a) {
	if (a == 0) 
		return a;
	int l = 1, r = a, mid, sqrt;
	while (l <= r) {
		mid = l + (r - l) / 2;
		sqrt = a / mid;
		if (sqrt == mid) {
			return mid;
		} else if (mid > sqrt) {
			r = mid - 1;
		} else {
			l = mid + 1;
		} 
	}
	return r;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清河大善人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值