LeetCode 633. 平方数之和

本文探讨了如何判断一个非负整数是否可以表示为两个平方数之和的问题,并提供了一种双指针算法解决方案。该算法通过初始化右指针为sqrt(target)实现剪枝,降低了时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

633. 平方数之和

给定一个非负整数 c ,你要判断是否存在两个整数 a 和 b,使得 a2 + b2 = c 。

示例 1:

输入:c = 5
输出:true

解释:1 * 1 + 2 * 2 = 5

示例 2:

输入:c = 3
输出:false

示例 3:

输入:c = 4
输出:true

示例 4:

输入:c = 2
输出:true

示例 5:

输入:c = 1
输出:true

题解

右指针的初始化,实现剪枝,从而降低时间复杂度。设右指针为 x,左指针固定为 0,为了使 x的值尽可能接近 target,我们可以将 x 取为 sqrt(target)。

因为最多只需要遍历一次 0~sqrt(target),所以时间复杂度为 O(sqrt(target))。又因为只使用了两个额外的变量,因此空间复杂度为 O(1)。

链接:https://leetcode-cn.com/problems/sum-of-square-numbers/solution/shuang-zhi-zhen-jie-ti-by-simple-zd-hj34/

代码

class Solution {
public:
    bool judgeSquareSum(int c) {
        long l=0,r=sqrt(c);
        int sum=0;
        while(l<=r)
        {
            sum=l*l+r*r;
            if(sum==c)
                return true;
            else if(sum>c)
                r--;
            else
                l++;        
        }
        return false;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清河大善人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值