题目
给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。
请你设计并实现时间复杂度为 O(n) 的算法解决此问题。
示例 1:
输入:nums = [100,4,200,1,3,2]
输出:4
解释:最长数字连续序列是 [1, 2, 3, 4]。它的长度为 4。
示例 2:
输入:nums = [0,3,7,2,5,8,4,6,0,1]
输出:9
示例 3:
输入:nums = [1,0,1,2]
输出:3
提示:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
思想
为什么要使用hash?因为这样才可以通过O(1)去判断元素存不存在,为了避免一些重复元素,所以选择Set集合存储(自动去重)
核心原理:
首先,找到可以作为起始点值num(连续元素最小的值)
:遍历set集合,只要set集合中存在比当前元素num小的连续元素pre=num-1,则说明这个元素num,可以跳过如:nums=[3,2,4,5],从 3 开始,我们可以找到 3,4,5 这个连续序列;
但是nums存在3的连续元素2,所以而从 2 开始,我们可以找到 2,3,4,5 这个连续序列,一定比从 3 开始的序列更长之后,找到当前起始值可以到达的最大值max
,- max的初始值为num+1:只有后面一个连续数字存在集合中,其才是当前连续数字中可以到达的最大连续数字
- 如果存在集合中则max一直++,
- 直到不存在集合,便说明当前这个值num的连续序列中的最大值了
- 最后,一直对比这个连续序列长度 max - num,取最大值
由于当前num也是属于序列长度1,所以max-num后,并不需要再去-1(max初始化时加过1)
算法
class Solution {
public int longestConsecutive(int[] nums) {
if (nums.length == 0) {
return 0;
}
Set<Integer> set = new HashSet<>();
for (int num : nums) {
set.add(num);
}
int ans = 0;
for (int num : set) {
if (set.contains(num - 1)) {
continue;
}
int max = num + 1;
while (set.contains(max)) {
max++;
}
ans = Math.max(ans, max - num);
}
return ans;
}
}