基于目标群体的潜在人物挖掘

本文介绍了一种从社交图谱中挖掘与特定目标群体关系密切的潜在人物的方法。该方法首先遍历与目标群体相关联的所有个体,然后计算这些个体与目标群体之间的关系紧密度得分,并据此进行排序筛选,最终输出得分最高的前N位潜在人物及其与目标群体的关联路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、目标群体中存在潜在关系的人物挖掘

目标:通过对当前多个节点的标签、关系、属性的分析,从社交图谱中挖掘与目标群体关系紧密的潜在人物。

1、遍历路径拿到与目标人群有关联的所有人
2、计算潜在人与目标群体关系紧密度得分,并将得分更新到属性
3、使用targetGroupPersonDiggerRelaCount属性排序(通过潜在人与目标人群的关系紧密度SCORE排行)
4、过滤得分最高的前N个人
5、输出过滤的N个人与目标群体的关系路径

二、案例测试

1、目标群体

MATCH (n) WHERE id(n) IN [0,32,33,52] RETURN n

在这里插入图片描述
2、目标群体潜在关系人物挖掘

WITH  [0,32,33,52] AS groupIds
MATCH p=(source)--(target) WHERE id(source) IN groupIds AND 
zdr.apoc.relatCalculateRestrict(labels(target),labels(target),'Linkedin||Twitter||Facebook||人物') 
WITH zdr.apoc.removeIdsFromRawList(collect(id(target)),groupIds) AS targetIds,groupIds AS sourceIds
UNWIND targetIds AS targetId
UNWIND sourceIds AS sourceId
MATCH (sou),(tar) WHERE id(sou)=sourceId AND id(tar)=targetId
MATCH path=(sou)--(tar) WITH collect(id(sou)) AS sourceList,collect(id(tar)) AS targetList
CALL zdr.apoc.publicFriendAnalysisMap(sourceList,targetList) YIELD list WITH list,targetList,sourceList
UNWIND list AS row
MATCH (n) WHERE id(n)=row.id AND id(n) IN targetList SET n.targetGroupPersonDiggerRelaCount=row.count 
WITH n,sourceList ORDER BY n.targetGroupPersonDiggerRelaCount DESC SKIP 0 LIMIT 2 
MATCH p=(n)--(m) WHERE id(m) IN sourceList RETURN p

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马超的博客

谢谢大佬的赞赏 :)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值