序列中相连的元素从左到右两两做比对和位移,[0,1]、[1,2]、[2,3]……[n-1,n],比对完一轮后最大的(或最小的)就落到了队尾,对剩下的n-1个元素继续做相同操作,直到结束。
每次比对关注的值越来越大,最终露出水面,所以很形象的称为冒泡排序。
Java实现:
public class PaoPaoSort extends BaseSort{
public static long COUNT;//计数
//冒泡排序
public static Integer[] sort(Integer[] list){
for(int n=0;n<list.length;n++ ) {
for(int i=1;i<list.length-n;i++) {
COUNT++;
if(list[i]<list[i-1]) {
int x = list[i-1];
list[i-1] = list[i];
list[i] = x;
}
}
}
return list;
}
}
测试结果:
[122,-147,90,133,-102,-65,4,149,126,-91,127,-63,15,138,-176,166,181,-145,-172,-120,174,4,45,109,2,175,72,67,110,131]
Sorting..............
[-176,-172,-147,-145,-120,-102,-91,-65,-63,2,4,4,15,45,67,72,90,109,110,122,126,127,131,133,138,149,166,174,175,181]
冒泡排序消耗:435
时间复杂度方面,冒泡复杂而且稳定,不会因数据的随机性而变化,比对次数=(n-1)+(n-2)+…+(n-n+1)=(n^2)/2-n/2,所以复杂度O(n^2)
稳定性方面我们可以控制冒泡的规则,不打破相等数值原来的相对位置,所以是稳定的.
空间复杂度方面随n增大无开销增长,复杂度O(1)