同济&复旦团队的最新综述:大语言模型的检索增强生成

本文综述了检索增强生成(RAG)技术如何改善大语言模型的知识幻觉问题,通过结合参数化知识与非参数化外部知识库,提升大语言模型在生成任务中的准确性和透明度。RAG经历了Naive RAG、Advanced RAG到Modular RAG的发展,通过优化检索器、生成器和增强方法,提高了大语言模型的性能和实用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🍉 CSDN 叶庭云https://yetingyun.blog.csdn.net/


一、前言

目前,大语言模型常受困于知识幻觉问题,即生成不符合事实的编造内容,这限制了它们在真实场景中的应用。近几个月来,多项研究工作表明,利用实时检索外部知识作为补充,即检索增强技术,能有效缓解模型幻觉问题,并且是一种低成本的提升通用模型在特定领域和特定内容生成能力的方法。

论文题目:《Retrieval-Augmented Generation for Large Language Models: A Survey》

论文地址:https://arxiv.org/abs/2312.10997

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值