令人振奋的新的一年,拥抱 AI 智能体时代!

🍉 CSDN 叶庭云https://yetingyun.blog.csdn.net/


一、引言

本博客旨在深入分析 AI 智能体未来的发展趋势,详细阐述其演进的三个阶段:首先,独立执行任务;其次,多智能体间实现协作;最终,达成企业级全面协调。随着技术的不断进步,智能体将不仅成为高效工具,更将转变为提升工作效率、激发创新的重要伙伴。探讨这些阶段性进展,我们能够预见智能体在不同应用场景中的巨大潜力,以及它们如何重塑我们的工作方式和业务流程。

Salesforce 首席科学家、斯坦福大学计算机科学兼职教授 Silvio Savarese 表示:“Agentic AI 的未来带来了诸多引人入胜的研究挑战。我预见其发展之路将是从实现稳健的多智能体协作,到成为能够指挥跨企业工作的系统级领导者。

Salesforce 的产品 Agentforce 是一个改变游戏规则的存在,它让企业能够运用 AI 智能体,推动创新。我预计它将彻底改变我们与 AI 的合作模式。最近,Salesforce 通过推出 Agentforce,正引领企业迈入一个全新的 AI 赋能时代。步入 AI 的第三波浪潮,AI 智能体的应用让工作变得更加高效、有趣且富有创造力。从人才招聘到医疗保健,AI 与人类的合作在各行各业日益广泛。这种协作不仅能迅速满足大规模需求,而且在多数情况下,其精准度远超单纯的人工操作。尽管需要一些时间,但智能体无疑将在多方面优化我们的工作,包括提升生产力与效率、辅助战略决策,并提高整体工作满意度。无论是普通员工还是高管,几乎所有企业人员都能在调配人力资源的同时,指挥数字劳动力。在这个时代的发展进程中,信任和问责制扮演着至关重要的角色。

Agentic AI 的演进历经三个阶段:首先,专业智能体负责执行独立任务;其次,多智能体系统实现无缝协作;最后,企业级协调系统将全面革新企业的运作方式。Salesforce 的 AI 研究团队致力于塑造企业 AI 的未来。接下来,本博客将分享对智能体发展的展望,并探讨人类在此过程中的角色。


二、AI 智能体的演变:从规则到推理

LLM 是经过深度训练的大模型,能够理解并生成文本。AI 智能体的发展与机器学习的进步紧密相连。早期的基于规则的传统系统,例如机器人过程自动化(RPAs),虽能精确完成一系列任务,但在应对变化时却力不从心。这类系统不仅需大量技术支持,还需依赖专业人员咨询。

过去数十年间,机器处理信息的方式已发生巨变,从僵化的自动化系统转变为灵活、适应性强且高效的学习系统。如今,像 Agentforce 这样的现代平台所打造的智能体,能够理解具体情境,适应新变化,并执行多种任务。而未来的发展方向更加可期:我们将迎来借助多智能体推理的自适应智能体。这类智能体能够从周围环境中学习,在实际应用中不断进步,并与人类、企业客户、合作伙伴及供应商协同工作。甚至,它们还能与日益融入人们生活的个性化 AI 助手配合无间。目前,我们正处于企业级 AI 智能体发展的初级阶段,未来三个阶段正等待我们探索。


三、企业级 AI 智能体的三个阶段

就好比音乐从简单的单音旋律,逐渐演变成复杂而美妙的交响乐,AI 智能体也在不断进步,从单个独立工作,转变为多个智能体协同配合。每个发展阶段都稳固建立在上一阶段的基础之上,为企业创造出更加丰富、更有层次的互动体验。

第一阶段,独立执行专业任务。专家智能体专注于特定行业,能出色地完成既定任务,为日常关键的商业运作带来了前所未有的效率和准确性。这些智能体构成了企业应用 AI 的基础,它们处理零散任务既稳定又迅速,极大地改变了各部门的工作流程。此外,它们还能将 AI 的最新成果应用于工作中,如精准预测最佳行动方案,根据每位客户的偏好和行为提供高度个性化的产品推荐。无论是面向客户、服务团队还是销售代表(无论是人还是智能体),它们都能生成高质量的指导意见、营销文案和信函。在商业领域,智能体彻底革新了库存和账户管理。它们不仅进行简单的库存检查,还会主动监控多个地点的库存状况,预测季节性需求变化,并实时生成账户摘要,从中发现不寻常的模式或潜在机会

过去,人工分析这些任务需要耗费好几个小时,而现在智能体几秒钟就能完成,且分析得更准确、更透彻。这为零售客户带来了更加优质、个性化的体验,甚至令人称奇。服务运营领域也经历了类似的转变。这些智能体不仅能进行基本的账单汇总,还能分析客户互动模式,自动对服务请求进行分类与排序,从而得出关于客户需求的预测性洞察。智能体能够发掘客户行为中的趋势,这些趋势或许预示着客户满意度存在问题,或是存在业务拓展的契机。这样一来,它们为服务团队提供的是实用信息,而非单纯的数据堆砌。客户服务因此变得轻松流畅,终端客户几乎感受不到服务的存在——很多时候,问题还未被察觉,便已被智能体悄然解决。在金融服务领域,智能体极大地提升了客户服务效率。确认争议时,智能体能分析交易历史,识别潜在的欺诈行为,并自动启动相关安全协议。进行财务规划时,智能体整合市场数据、客户个人历史以及各类经济指标,生成全面的分析报告。合理利用这些智能体,企业后台运作效率将大幅提升,消费者也能享受到更为先进的私人银行、投资指导及财富管理服务。

第二阶段,多智能体间实现协作。这一阶段,公司内部的专家智能体开始协同合作,朝着一个共同的商业目标努力。「协调者智能体」负责组织多个专家智能体协同工作。这就好比餐厅的总经理,要把出色的接待员、服务员、经理、厨师、备餐员和配送员组织起来,大家齐心协力,赢得那个梦寐以求的米其林星级。

在复杂的商业场景中,复合智能体的表现是怎样的呢?我们来看看这个客户服务场景。有一位忠诚的零售客户,想要更换一款过季商品的尺码。这时,多个智能体在背后默默协作。首先,有一名前线服务代表负责处理客户最初的询问。接着,一名库存专家会去检查各个地方的产品库存情况。同时,物流智能体开始计算运输选项和时间安排。还有账单专家,认真审查客户的账户历史和支付选项。最关键的是「协调者智能体」,它把前面这些智能体的工作成果汇总到一起,生成一个有条理、高效率,既符合品牌形象又贴合客户需求的回复。这些回复会交给前线工作人员,他们审核、完善后,再分享给客户。

当多智能体方法得到妥善实施,且 “协调者智能体” 为人类协调者提供服务时,能带来诸多由 AI 驱动的显著优势

  • 可靠性提升:系统通过专门化、可靠的智能体专注于特定领域。每个智能体的工作范围较窄,这不仅提高了可靠性,还有效减少了幻觉现象的发生。

  • 安全性增强:采用分布式处理方式,将敏感数据的处理任务交给特定智能体,从而大幅提升了安全性。

  • 可扩展性强:随着需求的变化,生态系统能够无缝扩展。组织可以不断引入新的专门化智能体,轻松实现功能的拓展。这无疑是其中最为关键的优势。

最终阶段,达成企业级全面协调的智能体系统。在理想的最终阶段,跨组织边界的复杂智能体对智能体(A2A)交互应运而生,开创了前所未有的商业模式。除了传统的企业对企业(B2B)、企业对消费者(B2C)模式,还出现了企业对智能体(B2A),乃至企业对智能体再到消费者(B2A2C)的交互形式。在这些新兴模式中,AI 智能体成为了工作和交易的关键中介。以一个汽车租赁场景为例:客户的个人 AI 智能体与租赁公司的商业 AI 智能体进行谈判。客户智能体致力于争取更优惠的价格和更多价值,而租赁公司智能体则试图通过附加服务增加收入。然而,租赁公司的智能体必须谨慎行事,既要积极推销,又不能过于激进,以免失去客户,让竞争对手得逞。这些智能体间的交互,依赖于复杂的博弈理论。它们需要具备出色的谈判技巧,遵循既定的协议,在不确定的环境中有效管理风险,拥有可靠的信任验证机制,并能巧妙地解决冲突。

现在,想象一下复杂的企业流程。以供应链优化和客户协调工作为例,无论你是消费者还是企业员工,集成式 AI 都能为你配备一个智能助手。这个助手能够根据你的需求和期望,处理复杂的协调工作,并进行有价值的协作。然而,要实现这一目标,我们人类还需付出诸多努力,并解决众多挑战。


四、部署复杂智能体系统的必要条件:信任与责任

当我们部署日益复杂的智能体系统时,每项决策都需遵循信任和责任这两个基本原则。

构建信任,在智能体时代显得尤为重要。信任的内涵已不再局限于防范有害内容、偏见和幻觉。Salesforce 的最新研究显示,61% 的客户认为,随着 AI 的发展,可信度变得比以往任何时候都更加关键。我们正步入一个全新领域,其中组织需对人类与 AI 的共生关系抱有深度信任。这种信任建立在以下要素之上:

  • 首先是准确性和边界。AI 智能体必须在明确的范围内运行,并保持高度的准确性。

  • 其次,智能体的自我意识同样不可或缺。就像一位值得尊敬的同事,AI 智能体应清楚自己的能力边界,并在需要时向人类寻求帮助。这要求建立复杂的交接协议,确保 AI 与人类能无缝配合。例如,我们的 AI 研究团队正致力于研究训练方法,让 AI 智能体在遇到难题时,能标记出不确定之处,并主动寻求帮助。经过适当训练,AI 将学会在不确定时不盲目猜测,而是向人类求助。

  • 然后,对于多智能体系统,全球公认且广泛采用的协议至关重要。这些协议使协调者智能体能够安全、合乎道德地与其他企业的智能体进行交流、协商与合作,从而实现双方共同利益。这种互动需快速、高效且公平。

  • 最后,随着 AI 智能体的增多,安全措施也必须加强。一些人可能会利用 AI 进行破坏,如训练 AI 蠕虫来泄露数据,或尝试控制其他 AI 智能体,以曝光客户的私人数据。因此,强化保护、做好隐私控制以及持续监控,是维持信任的关键。只有建立起信任,AI 才能从单纯的工具转变为与我们共同成长的业务伙伴。

确保问责制,当组织部署能每秒做出数千个决策的 AI 智能体时,必须建立明确的责任和监督框架。这样,一旦出现问题,我们就能迅速应对。以下是如何构建负责监督智能体的管理团队的建议:

  • 首先,建立清晰的责任链条。AI 智能体做出重要决策时,必须明确谁来负责,不容含糊。这可能需要设立新角色,如“AI 运维官”,他们负责监管智能体的部署,并在问题发生时承担责任。

  • 其次,需要一个强大的系统,能在信息不完整、有偏见、出现幻觉或产生有害输出前,识别并解决问题。这不仅仅是简单的安全检查,而是持续监控智能体的决策,具备实时干预能力,并配有完整的审计追踪机制。

  • 再者,利用最新的研究成果,如检索增强生成(RAG)技术,改善 AI 系统获取和验证信息的方式。这将使我们能够快速评估和调整 AI 系统,确保其给出的结果既准确又可靠。同时,制定流程,让人类能对智能体进行监督和干预。超越 “human-in-the-loop” 的简单概念,设计更复杂的框架,明确人类在何时、以何种方式介入智能体的决策。在常规任务中,智能体可自主决策;而在重大决策时,人类的判断仍至关重要。一旦出现错误,应有一套结构化的应对方法,包括技术层面的回滚程序,明确与客户的沟通方式、补救措施,以及系统性改进的协议,防止类似问题再次发生。

  • 最后,面对商业决策的自主 AI 智能体,现有的监管环境并不适用。我们需要与监管机构合作,制定合适的治理结构,明确 AI 智能体的责任,并建立全新的法律和合规框架。


五、展望未来:科学方法与企业创新

要部署真正有效的 AI 系统,企业高层需具备长远眼光和大格局,将这些技术进步应用于实际中。企业 AI 应用的成功与否,不仅取决于部署了多少 AI 智能体或落地速度的快慢。关键在于企业领导和技术专家能否精心规划,使 AI 与现有工作流程、业务过程及人类工作偏好完美融合。

未来,人类与 AI 将携手合作,各展所长。随着 Agentforce 产品的发布,智能体已成为提升工作效能的强大工具,使团队能够完成以往难以达成的任务。此刻便是开启这一转型的时机,正如每次突破性实验始于假设,每次成功的 AI 转型也源于一个愿景,并最终验证成真。


📚️ 相关链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值