前言
在上一篇文章《文心4.5开源大模型的使用和部署》已经介绍了如何使用fastdeploy部署文心4.5开源大模型的,并且简单调用了接口,本篇文章来介绍Android如何调用这个部署的接口,并实现对话。
部署
- 首先还是需要下载要部署的文心模型,之前为了演示我使用了一个比较小的模型,现在部署上我使用更大的模型
ERNIE-4.5-21B-A3B-Paddle
。
aistudio download --model PaddlePaddle/ERNIE-4.5-21B-A3B-Paddle --local_dir ./models/ERNIE-4.5-21B-A3B-Paddle/
- 启动fastdeploy服务,要留意这个
8180
端口号,下面会使用到,注意为了节省显存,这次量化我使用了是wint4
方法。
python -m fastdeploy.entrypoints.openai.api_server \
--model ./models/ERNIE-4.5-21B-A3B-Paddle/ \
--port 8180 \
--quantization wint4 \
--max-model-len 32768 \
--max-num-seqs 32
- 写个Python脚本作为中转和记录对话历史数据,首先写一个LLM类作为整体的工具调用。
class LLM:
def __init__(self, host, port):
self.client = openai.Client(base_url=f"http://{host}:{port}/v1", api_key="null")
self.system_prompt = {"role": "system", "content": "You are a helpful assistant."}
self.histories: Dict[str, list] = {}
self.base_prompt = {"role": "user", "content": "请扮演一个AI助手角色,你的名字文心4.5。"}
self.base_prompt_res = {"role": "assistant", "content": "好的,我已经记住了。您有什么问题想要问我吗?"}
# 流式回复
def generate_stream(self, prompt, max_length=8192, top_p=0.8, temperature=0.95, session_id=None):
# 如果session_id存在之前的历史,则获取history
if session_id and session_id in self.histories.keys():
history = self.histories[session_id]
else:
# 否则创建新的session_id
session_id = str(uuid.uuid4()).replace('-', '')
history = [self.system_prompt, self.base_prompt, self.base_prompt_res]
history.append({"role": "user", "content": prompt})
print(f"历史纪录:{history}")
print("=" * 70)
print(f"【用户提问】:{prompt}")
all_output = ""
response = self.client.chat.completions.create(model="null",
messages=history,
max_tokens=max_length,
temperature=temperature,
top_p=top_p,
stream=True)
for chunk in response:
if chunk.choices[0].delta:
output = chunk.choices[0].delta.content
if output == "": continue
ret = {"response": output, "code": 0, "session_id": session_id}
all_output += output
# 更新history
history[-1] = {"role": "assistant", "content": all_output}
self.histories[session_id] = history
# 返回json格式的字节
yield json.dumps(ret).encode() + b"\0"
- 启动自己的服务接口,注意这几个参数,
host
和port
参数值本身服务暴露给Android调用的,fastdeploy_host
和fastdeploy_port
是fastdeploy部署的接口,也就是第二步设置的端口号及其部署所在的服务器IP。执行这个脚本就可以启动服务了,接下来就等Android调用了。
app = FastAPI()
@app.post("/llm")
async def api_llm(request: Request):
params = await request.json()
generator = model.generate_stream(**params)
background_tasks = BackgroundTasks()
return StreamingResponse(generator, background=background_tasks)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--fastdeploy_host", type=str, default="127.0.0.1")
parser.add_argument("--fastdeploy_port", type=int, default=8180)
args = parser.parse_args()
model = LLM(host=args.fastdeploy_host, port=args.fastdeploy_port)
# 启动服务
uvicorn.run(app, host=args.host, port=args.port)
Android调用
在Android中,核心代码如下,其中CHAT_HOST
的值为http://192.168.1.100:8000
,其中IP是开发者部署上面服务的服务器IP,端口是port
指定的端口号。下面的代码。主要通过实时从服务器接收返回的数据并解析,同时显示在页面上,实现了打字的效果。
// 发送文本结果到大语言模型接口
private void sendChat(String text) {
if (text.isEmpty()) {
return;
}
runOnUiThread(() -> sendBtn.setEnabled(false));
// 请求的参数
Map<String, String> map = new HashMap<>();
map.put("prompt", text);
if (session_id != null) {
map.put("session_id", session_id);
}
JSONObject jsonObject = new JSONObject(map);
try {
jsonObject.put("top_p", 0.8);
jsonObject.put("temperature", 0.95);
} catch (JSONException e) {
throw new RuntimeException(e);
}
RequestBody requestBodyJson = RequestBody.create(jsonObject.toString(),
MediaType.parse("application/json; charset=utf-8"));
Request request = new Request.Builder()
.url(CHAT_HOST + "/llm")
.post(requestBodyJson)
.build();
OkHttpClient client = new OkHttpClient.Builder()
.connectTimeout(30, TimeUnit.SECONDS)//设置连接超时时间
.readTimeout(30, TimeUnit.SECONDS)//设置读取超时时间
.build();
try {
Response response = client.newCall(request).execute();
ResponseBody responseBody = response.body();
// 接收流式结果
InputStream inputStream = responseBody.byteStream();
byte[] buffer = new byte[2048];
int len;
StringBuilder all_response = new StringBuilder();
StringBuilder sb = new StringBuilder();
while ((len = inputStream.read(buffer)) != -1) {
try {
// 处理读取到的数据
String data = new String(buffer, 0, len - 1, StandardCharsets.UTF_8);
sb.append(data);
byte lastBuffer = buffer[len - 2];
buffer = new byte[2048];
if (lastBuffer != 0x7d) {
continue;
}
data = sb.toString();
sb = new StringBuilder();
Log.d(TAG, data);
JSONObject resultJson = new JSONObject(data);
int code = resultJson.getInt("code");
String resp = resultJson.getString("response");
all_response.append(resp);
session_id = resultJson.getString("session_id");
runOnUiThread(() -> {
Msg lastMsg = mMsgList.get(mMsgList.size() - 1);
if (lastMsg.getType() == Msg.TYPE_RECEIVED) {
mMsgList.get(mMsgList.size() - 1).setContent(all_response.toString());
// 有新消息时,刷新RecyclerView中的显示
mAdapter.notifyItemChanged(mMsgList.size() - 1);
} else {
mMsgList.add(new Msg(resp, Msg.TYPE_RECEIVED));
// 有新消息时,刷新RecyclerView中的显示
mAdapter.notifyItemInserted(mMsgList.size() - 1);
}
// 将RecyclerView定位到最后一行
mRecyclerView.scrollToPosition(mMsgList.size() - 1);
});
} catch (JSONException e) {
e.printStackTrace();
}
}
inputStream.close();
response.close();
} catch (IOException e) {
e.printStackTrace();
}
runOnUiThread(() -> sendBtn.setEnabled(true));
}
效果图如下:
获取源码
在公众号中回复【部署文心4.5开源模型给Android设备调用】即可获取源码。