目录
前言
作为目标检测领域最受欢迎的算法之一,YOLOv5以其出色的性能和易用性赢得了广大开发者的青睐。本文将对Ultralytics发布的YOLOv5-7.0版本代码文件结构进行说明,帮助初学者快速上手,也为进阶开发者提供参考。这里博主给你们准备了该代码的网盘链接方便你们下载。
yolov5-v7.0: https://pan.baidu.com/s/1SM0jkIEuTdN34wk1c6aOXQ
yolov5s.pt:https://pan.baidu.com/s/1QhkWLmSbkdAflbmGigkSeA
提取码:ppwq
如下图为yolov5-7.0代码的目录。
一、项目整体结构
除去下方所标注出来的文件,其余为github上的一些不重要文件,博主就不进行阐述啦!
yolov5-7.0
├── classify/ # 图像分类相关
├── data/ # 数据配置和加载
├── models/ # 模型定义
├── segment/ # 实例分割相关
├── utils/ # 工具函数
├── benchmarks.py # 模型基准测试脚本
├── detect.py # 检测脚本
├── export.py # 模型导出脚本
├── hubconf.py # PyTorch Hub支持
├── train.py # 训练脚本
├── val.py # 验证脚本
└── ...
二、核心模块详解
(1)classify/ - 图像分类相关代码目录
这是放了YOLOv5的图像分类相关代码,包含以下文件:
predict.py: 图像分类分类脚本
train.py: 图像分类训练脚本
val.py: 图像分类验证脚本
(2)data/ - 数据相关配置
数据相关配置文件,包含一下文件:
hyps文件夹
里面包含不同任务的超参数配置:
hyp.scratch-low.yaml (轻量级配置,数据增强低,适合小型型号,如s和n)
hyp.scratch-med.yaml (中等配置,数据增强中,适合中型型号,如m)
hyp.scratch-high.yaml (高精度配置,数据增强高,适合大型型号,如x和l)
images文件夹
里面放了两张官方的测试图片,用来进行目标检测测试
scripts文件夹
里面放了下载官方数据集和官方预训练模型权重的shell脚本,方便用户下载
*.yaml
剩余的yaml文件,均为一些官方的数据集的数据集配置文件,其中coco128.yaml是官方coco128数据集的一个最基础的标准数据集配置,如果想加载一些自己的数据集可参照此文件进行数据集的配置
(3)models/ - 模型定义目录
这是YOLOv5的核心模型定义部分,包含以下重要文件:
hub文件夹
里面是PyTorch Hub支持模块的一些模型网络结构参数配置文件。
(正常我们做本地训练模型和检测是不会用到hub相关的文件的,可忽略)
segment文件夹
里面是做实例分割所用到的一些模型网络结构参数配置文件。
common.py
包含了 YOLOv5 中最常用的神经网络模块定义,是模型构建的基础组件库。
class Conv(nn.Module): # 标准卷积模块
class Bottleneck(nn.Module): # 瓶颈结构
class C3(nn.Module): # CSP瓶颈结构
class SPP(nn.Module): # 空间金字塔池化
experimental.py
实验性模块,包含一些前沿但尚未完全验证的结构
tf.py
YOLOv5中实现PyTorch到TensorFlow模型转换的核心文件,它实现了将PyTorch模型转换为TensorFlow/Keras模型的功能
yolo.py
这是模型构建的主文件,定义了YOLO模型的整体架构!
包括:
Detect(检测头):处理目标检测的核心逻辑,生成边界框、类别概率和置信度。
Segment(分割头):继承自 Detect,扩展了实例分割功能。
BaseModel:提供模型通用功能(如层融合、性能分析)。
DetectionModel:检测任务模型,从 YAML 文件解析模型结构,构建完整检测网络。
SegmentationModel:分割任务模型,从 YAML 文件解析模型结构,构建完整分割网络。
ClassificationModel:分类任务模型,从 YAML 文件解析模型结构,构建完整分类网络。
.yaml配置文件
如yolov5s.yaml定义了不同规模模型的结构参数网络模型配置文件。
分别有l、m、n、s、x
(4)segment/ - 实例分割相关代码目录
这是放了YOLOv5的实例分割相关代码,包含以下文件:
predict.py: 实例分割分割脚本
train.py: 实例分割训练脚本
val.py: 实例分割验证脚本
(5)utils/ - 工具函数集
aws文件夹
恢复中断训练,和aws平台使用相关的工具
docker文件夹
包含 YOLOv5 项目中使用 Docker 容器化部署的相关工具和配置文件
flask_rest_api文件夹
和flask 相关的工具
google_app_engine
和谷歌app引擎相关的工具
loggers文件夹
日志打印相关
segment文件夹
实例分割相关的一些工具函数
剩余py文件
activations.py: 激活函数相关实现
augmentations.py: 数据增强相关实现
autoanchor.py: 自动计算anchor的工具
autobatch.py: 自动生成批量大小工具
callbacks.py: 训练回调函数
dataloaders.py: 数据集加载和处理
downloads.py: 谷歌云盘内容下载
general.py: 通用工具函数(IOU计算、指标计算等)
loss.py: 损失函数实现
metrics.py: 评估指标计算
plots.py: 绘图相关函数(检测结果可视化等)
torch_utils.py: PyTorch相关工具函数
triton.py: 提供了与Triton推理服务器交互的工具类
三、主要执行代码
(1)benchmarks.py - 模型基准测试脚本
这是一个用于测试 YOLOv5 模型在不同导出格式下性能表现的基准测试脚本。用于各个测试模型的文件大小(MB),在指定数据集上评估mAP50-95指标,以及测量单张图片的推理时间(ms)。
脚本支持测试以下11种导出格式的性能:
PyTorch (.pt)
TorchScript (.torchscript)
ONNX (.onnx)
OpenVINO
TensorRT (.engine)
CoreML (.mlmodel)
TensorFlow SavedModel
TensorFlow GraphDef (.pb)
TensorFlow Lite (.tflite)
TensorFlow Edge TPU
TensorFlow.js
(2)detect.py - 检测脚本
支持使用训练好的模型对多种输入源(图像、视频、摄像头等)进行目标检测,包含后处理和非极大值抑制(NMS)实现。
(3)export.py - 模型导出脚本
能够实现将PyTorch (.pt)模型导出为其他格式,支持ONNX (.onnx)、TorchScript (.torchscript)、CoreML (.mlmodel)等格式。
(4)hubconf.py - PyTorch Hub支持
使YOLOv5可以通过PyTorch Hub直接加载。
(5)train.py - 训练脚本
模型主训练入口,可以对指定的数据集进行目标检测模型的训练,支持多种参数配置,并且包含训练循环、验证、模型保存等逻辑。
(6)val.py - 验证脚本
能够实现将你训练好的目标检测权重模型在指定的验证集上评估模型的性能,计算mAP等指标数据并生成评估图。
结语
到这里本篇文章就到此结束啦,如果觉得这篇文章对你有所帮助,希望能够给博主一个关注和点赞噢!最后对文章有问题的欢迎在评论区留言询问噢!
点击下方可跳转yolov5训练模型以及检测教程篇:
【YOLOv5目标检测教学】包括环境配置、数据集制作、模型训练、加载模型进行目标检测(超详细、小白入门版)