| 图源
图像重采样这个词,可能许多人都会觉得陌生。但是图像放大,图像缩小,图像旋转,图像错切等这些我们熟悉操作背后,增多、减少和移位的像素点值的确定,其实都是通过重采样(resample)来完成的。数字图像,是对连续的模拟图像采样后的结果,而由插值理论我们可以知道,由有限像素点的数字图像,我们可以插值出近似的模拟图像。再对该模拟图像按照要求的采样间隔采样,就可以得到符合要求的重采样结果。常用的插值方法有线性插值,双线性插值,双三次插值,样条插值等。对一般图像进行重采样的工具有很多,比如opencv,matlab,PIL等,但本文主要是介绍对MRI脑影像这一特殊图像进行重采样的方法,文中包括FSL、SPM12、NIfTI_20140122(3D或4D)、dpabi、nilearn(3D或4D)五种工具,无论你用python,还是matlab,无论你用windows还是linux都可以用得着。
工具: FSL6.0.3、SPM12
copyright ©意疏:https://blog.csdn.net/sinat_35907936/article/details/114086796
图像重采样原理
数字图像不像模拟图像,它除了每个采样点——像素点处有值外,其他地方没有任何图像信息。而如果我们增大或者减小图像分辨率或者改变图像形状,由于涉及像素点的增减移位,变化后的图像的新像素点就可能出现在原先的采样点与采样点之间的位置,比如分辨率从n * n 变成 2n * 2n,则原先采样点与采样点的中间将出现一个新的像素点。下图中A、B、C三点均为新像素点,图源。
前面说过,数字图像采样点(像素点)与采样点之间没有任何图像信息,而这些新像素点的值又不能凭空产生,那就只能通过周围的像素点值进行估计。常用插值方法插出局部的连续图像,再在连续图像上重采样得到新像素点的值。
通过插值来实现重采样。插值理论是数值分析中一个重要的板块,它与拟合类似,都是要通过有限的已知点,得到逼近已知点变化规律的连续函数。两者的区别是,插值出来的