基于双向长短期记忆神经网络【biLSTM】模型的污染数据预测实战

本文通过环境气象领域的数据集,实战应用双向LSTM网络进行时序建模,探讨数据预处理、缺失值填充、模型训练及效果评估。结果显示模型表现良好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     时序数据建模分析已经有很多相关的应用了,在这个领域里面LSTM网络绝对是占据着非常重要的作用,自从LSTM网络提出以来,陆陆续续又出现了很多相关的变种网络,今天从网上找到了一份环境气象领域相关的数据集,可以用于时序数据的建模分析,这里就基于这个数据集来实战双向LSTM网络的时序建模。 

      这是一张比较形象比较简单的示意图:

      双向,顾名思义理解起来也很简单,就是信息在LSTM网络中是双向计算的,即:正向计算+反向计算。

     关于biLSTM的原理介绍,这里就不展开了,相信很多博客的教程会更加丰富完整,这里主要是做点实际的应用分析。

    首先来看一下数据集【展示前100行数据内容】:

评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值