yolov5s融合SPD-Conv用于提升小目标和低分辨率图像检测性能实践五子棋检测识别

本文介绍了将SPD-Conv技术应用于yolov5s模型,以提高小目标和低分辨率图像检测性能,特别是针对五子棋检测。通过论文《No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects》了解该技术,并展示了项目和训练过程,最终实现精准的五子棋检测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天刚发表的一篇论文提出来了针对小目标和低分辨率图像检测性能提升的技术SPD-Conv,感觉还是挺有意义的,今天主要是基于这项技术融合进yolov5s模型中来开发对应的目标检测模型,实现五子棋的检测,本身五子棋就是比较密集的小目标检测,先来看下效果图:

 论文详情如下:

《No More Strided Convolutions or Pooling: A New CNN Building Block for Low-Resolution Images and Small Objects》
2022年8月7日发表在ECML PKDD 2022论文集上的最新paper
作者:来自于 Missouri 大学的 Raja Sunkara and Tie Luo
论文地址:https://arxiv.org/abs/2208.03641v1

论文截图如下所示:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值