python基于DeeplabV3Plus开发构建裂缝分割识别系统,并实现裂缝宽度计算测量

文章介绍了在先前裂缝检测模型基础上,利用DeepLabV3+算法进一步优化图像分割,特别是对裂缝的精细化分割,并通过像素数据计算裂缝宽度。作者提到了数据集的规模和标注方式,以及训练日志和实例效果展示,建议使用opencv和最新模型提升精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在我之前的文章中已经有不少基于裂缝场景的数据开发构建的模型了,感兴趣的话可以自行移步阅读,如下:

《基于yolov5s+bifpn实践隧道裂缝裂痕检测》

《基于YOLOV7的桥梁基建裂缝检测》

《水泥路面、桥梁基建、隧道裂痕裂缝检测数据集》

《基于DeepLabV3实践路面、桥梁、基建裂缝裂痕分割》

《python基于融合SPD-Conv改进yolov5与原生yolov5模型实践路面裂痕裂缝检测》

《助力交通出行,基于目标检测模型实现路面裂痕缺陷智能识别》

有的是做的目标检测,有的是做的实例分割,本文的核心目的就是在前文的基础上进一步优化实现裂缝分割模型,同时精细粒度计算得到裂缝宽度。

收先看下效果图:

 简单看下数据集:

 标注数据如下:

 也提供了另一种风格的标注形式:

 可以看到:共有4752的样本数据量。

 这里模型的话主要是还是使用的DeepLabV3+算法,网上都是开源的这里就不再赘述了。

训练日志输出如下:

 在得到图像分割模型之后就可以对裂缝图像进行分割计算了,实例效果图如下所示:

 之后就可以基于这些得到的像素数据来计算宽度了,我的想法很简单主要是基于opencv来基于图形学来进行操作了,还是比较好实现的,只是精度差别问题而已,这里建议善用最近爆火的大模型,如下:

 真香......

最后看下效果图,如下所示:

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值