tf.nn.max_pool(value, ksize, strides, padding, name=None)
参数是四个,和卷积很类似:
- 参数
value
:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map
,是[batch, height, width, channels]
这样的shape
- 参数
ksize
:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1]
,因为我们不想在batch
和channels
上做池化,所以这两个维度设为了1 - 参数
strides
:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]
- 参数
padding
:和卷积类似,可以取'VALID'
或者'SAME'
返回一个 Tensor,类型不变,shape 仍然是 [batch, height, width, channels]
这种形式
示例:
假设有这样一张图,双通道:
通道1:
通道2:
可以想象把这两个通道叠在一起,数字 1 后跟的数字是 2,然后是 3 然后是 4…
这样的图片在数组中的表示就是:
[
[[1.0,2.0,3.0,4.0],
[5.0,6.0,7.0,8.0],
[8.0,7.0,6.0,5.0],
[4.0,3.0,2.0,1.0]],
[[4.0,3.0,2.0,1.0],
[8.0,7.0,6.0,5.0],
[1.0,2.0,3.0,4.0],
[5.0,6.0,7.0,8.0]]
]
因为 max_pool
中输入的 value
是 4 维的,因此将这样一个 shape
为 2x2x4
的数组 reshape
为 1x4x4x2
:
[[[[1. 2.]
[3. 4.]
[5. 6.]
[7. 8.]]
[[8. 7.]
[6. 5.]
[4. 3.]
[2. 1.]]
[[4. 3.]
[2. 1.]
[8. 7.]
[6. 5.]]
[[1. 2.]
[3. 4.]
[5. 6.]
[7. 8.]]]]
经过 max_pool
,池化大小为 2x2
,步长为 1
,方式是 Valid
:
pooling = tf.nn.max_pool(a,[1,2,2,1],[1,1,1,1],padding='VALID')
得到池化结果:
[[[[8. 7.]
[6. 6.]
[7. 8.]]
[[8. 7.]
[8. 7.]
[8. 7.]]
[[4. 4.]
[8. 7.]
[8. 8.]]]]
因此池化后的图就是:
也可改变 max_pool
中的 步长和池化方法:
pooling = tf.nn.max_pool(a,[1,2,2,1],[1,2,1,1],padding='SAME')
得出结果:
[[[[8. 7.]
[6. 6.]
[7. 8.]
[7. 8.]]
[[4. 4.]
[8. 7.]
[8. 8.]
[7. 8.]]]]
完整代码:
import tensorflow as tf
import numpy as np
a=tf.constant([
[[1.0,2.0,3.0,4.0],
[5.0,6.0,7.0,8.0],
[8.0,7.0,6.0,5.0],
[4.0,3.0,2.0,1.0]],
[[4.0,3.0,2.0,1.0],
[8.0,7.0,6.0,5.0],
[1.0,2.0,3.0,4.0],
[5.0,6.0,7.0,8.0]]
])
a=tf.reshape(a,[1,4,4,2])
pooling = tf.nn.max_pool(a,[1,2,2,1],[1,2,1,1],padding='SAME')
with tf.Session() as sess:
print("image:")
image=sess.run(a)
print (image)
print("reslut:")
result=sess.run(pooling)
print (result)
Referene: