tf.nn.max_pool 理解

本文详细介绍了tf.nn.max_pool函数的参数及工作原理,通过示例解释了如何在TensorFlow中进行最大池化操作。内容包括输入张量的形状、池化窗口大小、步长和填充方式,并给出了不同参数设置下的池化结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.nn.max_pool(value, ksize, strides, padding, name=None)

参数是四个,和卷积很类似:

  • 参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是 feature map ,是[batch, height, width, channels] 这样的 shape
  • 参数 ksize:池化窗口的大小,取一个四维向量,一般是 [1, height, width, 1],因为我们不想在 batchchannels 上做池化,所以这两个维度设为了1
  • 参数 strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是 [1, stride,stride, 1]
  • 参数 padding:和卷积类似,可以取 'VALID' 或者 'SAME'

返回一个 Tensor,类型不变,shape 仍然是 [batch, height, width, channels] 这种形式

示例:

假设有这样一张图,双通道:

通道1:
在这里插入图片描述
通道2:
在这里插入图片描述
可以想象把这两个通道叠在一起,数字 1 后跟的数字是 2,然后是 3 然后是 4…
这样的图片在数组中的表示就是:

[
        [[1.0,2.0,3.0,4.0],
        [5.0,6.0,7.0,8.0],
        [8.0,7.0,6.0,5.0],
        [4.0,3.0,2.0,1.0]],
        
        [[4.0,3.0,2.0,1.0],
         [8.0,7.0,6.0,5.0],
         [1.0,2.0,3.0,4.0],
         [5.0,6.0,7.0,8.0]]
    ]

因为 max_pool 中输入的 value 是 4 维的,因此将这样一个 shape2x2x4 的数组 reshape1x4x4x2

[[[[1. 2.]
   [3. 4.]
   [5. 6.]
   [7. 8.]]

  [[8. 7.]
   [6. 5.]
   [4. 3.]
   [2. 1.]]

  [[4. 3.]
   [2. 1.]
   [8. 7.]
   [6. 5.]]

  [[1. 2.]
   [3. 4.]
   [5. 6.]
   [7. 8.]]]]

经过 max_pool,池化大小为 2x2,步长为 1,方式是 Valid :

pooling = tf.nn.max_pool(a,[1,2,2,1],[1,1,1,1],padding='VALID')

得到池化结果:

[[[[8. 7.]
   [6. 6.]
   [7. 8.]]

  [[8. 7.]
   [8. 7.]
   [8. 7.]]

  [[4. 4.]
   [8. 7.]
   [8. 8.]]]]

因此池化后的图就是:
在这里插入图片描述
在这里插入图片描述

也可改变 max_pool 中的 步长和池化方法:

pooling = tf.nn.max_pool(a,[1,2,2,1],[1,2,1,1],padding='SAME')

得出结果:

[[[[8. 7.]
   [6. 6.]
   [7. 8.]
   [7. 8.]]

  [[4. 4.]
   [8. 7.]
   [8. 8.]
   [7. 8.]]]]

完整代码:

import tensorflow as tf
import numpy as np

a=tf.constant([  
        [[1.0,2.0,3.0,4.0],  
        [5.0,6.0,7.0,8.0],  
        [8.0,7.0,6.0,5.0],  
        [4.0,3.0,2.0,1.0]],  

        [[4.0,3.0,2.0,1.0],  
         [8.0,7.0,6.0,5.0],  
         [1.0,2.0,3.0,4.0],  
         [5.0,6.0,7.0,8.0]]  
    ])

a=tf.reshape(a,[1,4,4,2])

pooling = tf.nn.max_pool(a,[1,2,2,1],[1,2,1,1],padding='SAME')

with tf.Session() as sess:  
    print("image:")  
    image=sess.run(a)  
    print (image)  
    print("reslut:")  
    result=sess.run(pooling)  
    print (result)

Referene:

https://blog.csdn.net/mao_xiao_feng/article/details/53453926

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值