💡本篇内容
:RT-DETR算法改进:超全集成超多种Loss损失函数,包括WIoU、SIoU、XIoU、EfficiLoss、EIoU、DIoU、CIoU、α-IoU多种损失函数
💡本博客 改进源代码改进 适用于 RT-DETR目标检测算法(ultralytics项目版本)
按步骤操作运行改进后的代码即可🚀🚀🚀
💡改进 RT-DETR 目标检测算法专属|芒果专栏
文章目录
-
- 一、核心论文 理论部分 + 最新 RT-DETR算法 代码实践改进
- 二、RT-DETR 改进 SIoU 损失函数
- 三、RT-DETR 改进 WIoU 损失函数 核心代码改进
- 四、RT-DETR 改进 XIoU 损失函数 核心代码改进
- 五、RT-DETR 改进 α-IoU 损失函数 核心代码改进
- 六、RT-DETR 改进 EfficiLoss 损失函数 核心代码改进
- 七、RT-DETR 改进 CIoU 损失函数 核心代码改进
- 八、RT-DETR 改进 MPDIoU 损失函数 核心代码改进
- 九、RT-DETR 改进 EIoU 损失函数 核心代码改进
- 十、RT-DETR 改进 DIoU 损失函数 核心代码改进
一、核心论文 理论部分 + 最新 RT-DETR算法 代码实践改进
RT-DETR模型架构图显示了骨干网络的最后三个阶段{S3,S4,S5}作为编码器的输入。高效的混合编码器通过尺度内特征交互(AIFI)和跨尺度特征融合模块(CCFM)将多尺度特征转换为图像特征序列。IoU 感知查询选择用于选择固定数量的图像特征作为解码器的初始对象查询。最后,具有辅助预测头的解码器迭代优化对象查询以生成框和置信度分数。
二、RT-DETR 改进 SIoU 损失函数
改进第一步
在ultralytics/models/utils/loss.py文件下,找到_get_loss_bbox