RT-DETR算法改进:首发|最全Loss损失函数集合,包括WIoU、XIoU、SIoU、EfficiLoss、EIoU、DIoU、CIoU、α-IoU多种损失函数

本博客详细介绍了如何改进RT-DETR算法,涉及WIoU、SIoU、XIoU等多个损失函数的优化,包括核心代码的替换和新增功能,旨在提升目标检测的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡本篇内容:RT-DETR算法改进:超全集成超多种Loss损失函数,包括WIoU、SIoU、XIoU、EfficiLoss、EIoU、DIoU、CIoU、α-IoU多种损失函数

💡本博客 改进源代码改进 适用于 RT-DETR目标检测算法(ultralytics项目版本)

按步骤操作运行改进后的代码即可🚀🚀🚀

💡改进 RT-DETR 目标检测算法专属|芒果专栏

一、核心论文 理论部分 + 最新 RT-DETR算法 代码实践改进

在这里插入图片描述

RT-DETR模型架构图显示了骨干网络的最后三个阶段{S3,S4,S5}作为编码器的输入。高效的混合编码器通过尺度内特征交互(AIFI)和跨尺度特征融合模块(CCFM)将多尺度特征转换为图像特征序列。IoU 感知查询选择用于选择固定数量的图像特征作为解码器的初始对象查询。最后,具有辅助预测头的解码器迭代优化对象查询以生成框和置信度分数。

二、RT-DETR 改进 SIoU 损失函数

改进第一步
在ultralytics/models/utils/loss.py文件下,找到_get_loss_bbox

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值