主干网络篇 | YOLOv5/v7 更换骨干网络之 PP-LCNet | 轻量级CPU卷积神经网络

本文介绍了如何在YOLOv5和YOLOv7项目中集成PP-LCNet,这是一种基于MKLDNN加速的轻量级CPU卷积神经网络。PP-LCNet在保持相似延迟的同时,提高了模型的准确性,适用于对象检测、语义分割等任务。详细步骤包括在配置文件中添加源代码,并提供了更多YOLO实战内容的导航链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
论文地址:https://arxiv.org/abs/2109.15099
代码地址:https://github.com/ngnquan/PP-LCNet

我们提出了一种基于MKLDNN加速策略的轻量级CPU网络,名为PP LCNet,它提高了轻量级模型在多个任务上的性能。本文列出了在延迟几乎不变的情况下可以提高网络准确性的技术。通过这些改进,PP LCNet的精度可以在相同的分类推理时间下大大超过以前的网络结构。如图1所示,它优于最先进的模型。对于计算机视觉的下游任务,它也表现得很好,例如对象检测、语义分割等。我们所有的实验都是基于PaddlePaddle1实现的。PaddleClas2提供代码和预训练模型。



PP-LCNet

### YOLOv8 使用 PP-LCNet 轻量化卷积网络实现方法 #### 替换主干网络结构 为了使YOLOv8能够利用PP-LCNet的优势,在构建模型时需将原有的骨干网络替换为PP-LCNet架构。这涉及到修改配置文件中的backbone部分,指定使用新的网络定义[^1]。 ```yaml model: backbone: pp_lcnet.yaml ``` 此操作允许框架加载预设好的PP-LCNet设置,从而简化集成过程并确保一致性。 #### 配置优化选项 考虑到PP-LCNet专为高效计算设计的特点,建议启用特定于硬件平台的优化措施来进一步提升性能。对于CPU环境而言,可以考虑应用MKLDNN加速库的支持以充分利用多核处理能力[^2]: ```python import torch torch.backends.mkldnn.enabled = True ``` 这段代码片段展示了如何激活PyTorch内置的MKLDNN支持功能,有助于加快推理速度而不牺牲精度。 #### 训练数据增强策略调整 鉴于PP-LCNet具有较少的参数数量以及独特的层间连接方式,可能需要重新评估现有的训练方案。适当增加图像变换强度或引入更多样化的样本可以帮助改善最终检测效果。例如,采用Mosaic数据增强技术可以在不显著增加额外开销的情况下提供更丰富的特征表示。 ```python train_dataset = Dataset( ..., augment=True, # 启用数据增强 mosaic_prob=0.7 # 设置马赛克拼接概率 ) ``` 以上改动不仅促进了模型泛化能力的发展,同时也使得其更加适应实际应用场景下的复杂情况变化。 #### 测试阶段微调 完成上述准备工作之后,在部署前还需针对具体任务需求进行必要的测试与验证工作。特别是当目标设备资源有限时(如嵌入式系统),应特别关注运行时间指标,并据此作出相应调整直至满足预期标准为止。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值