REGTR:带有transformer的端对端点云对应(CVPR2022)

REGTR是一种使用transformer的端到端点云配准框架,它通过预测清晰的对应关系,省去了传统方法中的特征匹配和RANSAC步骤。网络直接估计刚性变换,实现高性能并在3DMatch和ModelNet基准上取得一流结果。

标题:REGTR:带有transformer的端对端点云对应

作者:Zi Jian Yew,Gim Hee Lee   

文稿整理:流苏

1.摘要

最近将学习的方式引入点云配准中取得了成功,但许多工作都侧重于学习特征描述符,并依赖于最近邻特征匹配和通过RANSAC进行离群值过滤,以获得姿态估计的最终对应集合。在这项工作中,我们推测注意机制可以取代显式特征匹配和RANSAC的作用,从而提出一个端到端的框架来直接预测最终的对应集。我们使用主要由自注意力和交叉注意力的transformer层组成的网络架构并对其训练,以预测每个点位于重叠区域的概率及其在其他点云中的相应位置。然后,可以直接根据预测的对应关系估计所需的刚性变换,而无需进一步的后处理。尽管简单,但我们的方法在3DMatch和ModelNet基准测试中取得了一流的性能。我们的源代码可以在https://github.com/yewzijian/RegTR.

2.引言

刚性点云配准指找到对齐两个点云的最佳旋转和平移参数的问题。点云配准的通用解决方案流程如下:1)检测关键点,2)计算这些关键点的特征描述符,3)通过最近邻匹配获得假定的对应关系,4)通常使用RANSAC以稳健的方式估计刚性变换。近年来,研究人员将学习的方式应用于点云配准,这些工作中有许多侧重于学习特征描述符,也有包括关键点检测,且最

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值