60项基于深度学习的SLAM顶会开源方案汇总(上篇)

本文汇总了近年来基于深度学习的SLAM相关顶会开源项目,涵盖里程计、建图、特征提取、SLAM、闭环检测等多个领域。通过分析这些项目,可以看出深度学习如何与传统几何方法结合,提升定位、建图和特征提取的精度和鲁棒性。文章列举了GeoNet、Depth-VO-Feat、CNN-SVO、RNN-Depth-Pose等多个项目,展示了深度学习在解决SLAM问题中的创新应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击进入—>3D视觉工坊学习交流群

0. 笔者个人体会

深度学习结合SLAM是近年来很热门的研究方向,也因此诞生了很多开源方案。笔者最近在阅读SLAM综述论文“A Survey on Deep Learning for Localization and Mapping: Towards the Age of Spatial Machine Intelligence”,该综述参考了255篇SLAM领域的顶会顶刊论文,并且涵盖了VO、建图、特征提取、定位、描述子提取、BA优化、回环、数据集等多个方向,非常全面。也因此,笔者一直想整理下文章中出现的开源项目,用于在后续工作中进行对比。

本文将对该综述中出现的开源方案进行整理(2018年以后),并附上摘要和论文信息。虽然可能文章并不是最新的,但每项开源工作都是顶会顶刊,设计思路很巧妙,参考价值很高。

由于方案较多,因此将分上下两节进行介绍。本节将介绍里程计、建图、特征提取、SLAM、回环方案以及论文中提到的两个数据集。

1. 里程计

里程计(VO/VIO/IO/LO/LIO)估计传感器的自我运动,并将传感器之间的相对运动整合到全局姿态中。深度学习方法能够从传感器数据中提取高级特征表示,从而提供解决里程计问题的替代方法,而不需要手工设计的特征提取器。现有的基于深度学习的里程计模型可以分为端到端里程计和混合里程计,前者完全基于神经网络,后者是经典里程计算法和深度神经网络的组合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值