作者:大森林 | 来源:3DCV
在公众号「3DCV」后台,回复「原论文」可获取论文pdf
添加微信:dddvision,备注:自动驾驶,拉你入群。文末附行业细分群
近年来,基于极坐标的表示方法在感知任务中表现出良好的应用前景。我们介绍了一种新型的极坐标三维物体探测器PARTNER。我们的方法在Waymo和ONCE验证集上分别以3.68%和9.15%的显著优势优于以前的基于极坐标的工作,并且获得了与最先进笛卡尔坐标系方法相当的结果。
1. 极坐标方法的优势
由于点云本身是不均匀分布的,靠近传感器的区域点云密度明显大于远处区域。采用笛卡尔坐标系表示 (例如体素化)时,为了控制内存消耗,需要选择合适的分辨率,这会导致近处区域丢失细节信息。
而极坐标表示天然地适应点云密度分布的属性,近处使用较高分辨率,远处使用较低分辨率,这样可以平衡不同距离区域的点云数量,提高特征表达的稳健性。所以,极坐标本身不会引入新的不均匀性,而是充分利用点云自身的特点来获得更好的特征表达。