ICCV2023 | 极坐标-点云梦幻联动,实现3D目标检测的最佳性能

本文介绍了极坐标方法在3D目标检测中的优势,如适应点云密度分布,以及面临的问题,如特征失真。作者提出了一种名为PARTNER的新型极坐标3D物体检测器,通过全局表示对齐和几何感知自适应模块解决了特征失真和全局失准问题。实验结果显示,PARTNER在Waymo和ONCE数据集上表现优秀,超越了现有极坐标和笛卡尔坐标方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:大森林 | 来源:3DCV

在公众号「3DCV」后台,回复「原论文」可获取论文pdf

添加微信:dddvision,备注:自动驾驶,拉你入群。文末附行业细分群

近年来,基于极坐标的表示方法在感知任务中表现出良好的应用前景。我们介绍了一种新型的极坐标三维物体探测器PARTNER。我们的方法在Waymo和ONCE验证集上分别以3.68%和9.15%的显著优势优于以前的基于极坐标的工作,并且获得了与最先进笛卡尔坐标系方法相当的结果。

1. 极坐标方法的优势

由于点云本身是不均匀分布的,靠近传感器的区域点云密度明显大于远处区域。采用笛卡尔坐标系表示 (例如体素化)时,为了控制内存消耗,需要选择合适的分辨率,这会导致近处区域丢失细节信息。

而极坐标表示天然地适应点云密度分布的属性,近处使用较高分辨率,远处使用较低分辨率,这样可以平衡不同距离区域的点云数量,提高特征表达的稳健性。所以,极坐标本身不会引入新的不均匀性,而是充分利用点云自身的特点来获得更好的特征表达。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值