【智能体】零代码学习 Coze 智能体(4)多智能体

『AI先锋杯·14天征文挑战第5期』 3w人浏览 27人参与

欢迎关注【AGI使用教程】 专栏
【智能体】零代码学习 Coze 智能体(1)
【智能体】零代码学习 Coze 智能体(2)
【智能体】零代码学习 Coze 智能体(3)
【智能体】零代码学习 Coze 智能体(4)


1、认识多智能体(Multi-Agent)

多智能体(Multi-Agent)是指由多个具有不同角色和技能的智能体组成的系统,它们可以像小组成员一样分工协作、互相配合,共同完成一个更复杂的目标。每个智能体都可以被赋予特定的职责:有的负责信息检索,有的负责数据分析,有的专门负责语言润色与排版。当它们按照一定的协作机制进行沟通和任务衔接时,就能像一个小团队一样工作。

在学习与科研场景中,多智能体的应用非常广泛。例如,在模拟课堂讨论时,可以设置多个智能体分别扮演学生、老师和评论员;在科研训练中,可以建立一个“研究助理团队”,其中一名智能体负责搜集文献,另一名负责提炼观点,还有一名负责撰写初稿。这种协作模式不仅能提高效率,也帮助我们更好地理解团队协作在真实工作中的重要性。

多智能体的优势主要体现在以下几个方面:
(1)分工明确:不同智能体专注于各自的任务,避免单个模型负担过重。
(2)提高效率:并行处理部分任务,缩短整体完成时间。
(3)增强可靠性:通过相互校对和验证,减少错误和遗漏。


2、Coze平台的多智能体模式

在 Coze平台中,可以通过多 Agent 模式搭建功能更加全面和复杂的 AI智能体。

在Coze中创建的智能体默认使用单 Agent 模式。在单 Agent 模式下处理复杂任务时,你必须编写非常详细和冗长的提示词,而且可能需要添加各种插件和工作流等,这增加了调试智能体的复杂性。
在多Agent 模式下,你可以为智能体添加多个 Agent,并连接、配置各个 Agent 节点,通过多节点之间的分工协作来高效解决复杂的用户任务。

多 Agent 模式通过以下方式来简化复杂的任务场景。
(1)可以为不同的 Agent 配置独立的提示词,将复杂任务分解为一组简单任务,而不是在一个智能体的提示词中设置处理所有判断条件和使用限制。
(2)多 Agent 模式允许你为每个 Agent 节点配置独立的插件和工作流。这不仅降低了单个 Agent 的复杂性,还提高了测试智能体时 bug 修复的效率和准确性,你只需要修改发生错误的 Agent 配置即可。与程序设计的对象类似。


3. 多智能体的创建

在 Coze平台中,默认情况下,智能体为单 Agent 模式。可以在创建智能体后将其设置为多 Agent 模式。

  1. 登录Coze开发平台,在导航栏选择 “工作空间-项目开发”,点击右上角 " +项目",在创建项目弹窗中点击 “创建智能体”。

  2. 在 “创建智能体” 弹窗选择 “AI创建”,然后单击 “生成”。Coze根据描述创建一个智能体 “多语言翻译精灵”。

在这里插入图片描述


  1. 切换为多智能体模式。
    Coze根据描述创建智能体 “多语言翻译精灵”,并进入智能体编排页面,系统已经自动完成了人设与回复逻辑等的基本设置。
    点击左上角的智能体名称之后的模式选项“单Agent”,在“选择模式”下拉框中选择“多Agents”,切换为为多智能体模式。

在这里插入图片描述


  1. 多智能体模式的编排页面。
    多Agent 模式的编排页面分为以下 4 个面板:
    (1)顶部区域是智能体的基本信息,包括所属团队、发布历史。
    (2)左边是编排面板,可以编写提示词、变量和其他配置。
    (3)中间是可以添加和连接 Agent 的画布。
    (4)右边是预览与调试面板,进行调试、检查运行详情等操作。
    为了便于绘制工作流,左侧编排面板和右侧调试面板可以折叠。

在这里插入图片描述


  1. 多智能体模式的全局设置。

在智能体的编排面板“人设与回复逻辑”,描述智能体的人物设定:

# 角色:你是一位多语言翻译大师,能够精准、流畅地提供英语、日语、德语这三种语言的翻译服务。
## 技能
### 技能 1: 翻译文本
1. 当用户提供一段需要翻译的文本时,你需要确定翻译的目标语言。
2. 当目标语言为英语、日语、德语其中之一时,你需要根据用户提供的文本,准确地将文本翻译成指定的目标语言。


4. 多智能体的节点配置

  1. 配置 父Agent 节点。

开始节点已连接到了具有智能体名称的 Agent 节点。
在适用场景中描述 Agent 的功能,例如“将用户输入翻译为目标语言”。其他配置项保持默认值即可。

  1. 添加 子 Agent 节点。
    单击“添加节点”,从菜单中选择“Agent”点击“添加”,向画布内添加一个Agent节点。

在这里插入图片描述


  1. 配置 子Agent节点。
    (1)点击Agent右上角“…”选择重命名,命名为“英语翻译助手”。
    (2)点击“模型设置”,选择Agent 所使用的大语言模型以及配置。
    (3)将适用场景修改为:“将用户输入翻译为英语”,Agent提示词修改为:
1. 将用户输入的内容翻译为英语, 
2. 如果目标语言不是英语,则返回“抱歉,我只能进行英语翻译。

在这里插入图片描述


  1. 复制 子Agent节点。
    点击 Agent右上角 “…” 选择创建副本,复制2个相同配置的Agent节点,将其分别命名为“德语翻译助手”、“日语翻译助手”,并相应修改适用场景和Agent提示词。

在这里插入图片描述


  1. 连接父Agent节点与添加的Agent节点。
    以图中场景为例,当用户有翻译需求时,父Agent节点分发翻译任务,会根据Agent节点中“适用场景”的描述,将英语翻译任务交给“英语翻译助手”Agent节点处理,德语翻译任务交给“德语翻译助手”Agent节点处理。

5. 多智能体的调试与发布

  1. 在右侧“预览与调试”面板中,可以实时调试智能体。
    输入一段中文发起翻译任务,以检查 Agent 能否正确处理该任务。注意输入时要说明翻译为何种语言,例如:“中译英:自人类文明发源以来,对智慧本源的探究便贯穿了文明的进程。”
    如图所示,父Agent分析用户输入,将翻译任务交给“英语翻译助手”Agent节点处理。

在这里插入图片描述


  1. 发布智能体。
    Coze支持将智能体发布到飞书、微信、抖音、豆包等多个渠道中,你可以根据个人需求和业务场景选择合适的渠道。
    完成调试后,单击发布将智能体发布到各种渠道中。
    (1)在智能体的编排页面右上角,单击“发布”。
    (2)在发布页面输入发布记录,并选择发布渠道,单击“发布”按钮。

  2. 使用智能体。
    发布完成后,在工作空间-个人空间-项目开发,可以看到发布的智能体。点击“立即对话”可以进入“多语言翻译精灵”智能体。也可以点击“复制智能体链接”将智能体分享给其他人使用。

在这里插入图片描述


通过多智能体的协作,我们可以让不同角色的虚拟助手分工合作,像一个团队一样完成更复杂的任务。与工作流的标准化执行相比,多智能体更强调灵活性和协同配合。两者结合使用,能够让智能体既具备流程化的稳定执行力,又拥有团队协作的灵活应变力,从而为构建更完善的智能系统打下基础。


下节 【智能体】零代码学习 Coze 智能体(4)工作流 ,我们继续介绍:工作流。


版权声明:
youcans@qq.com 原创作品,转载必须标注原文链接:
【智能体】零代码学习 Coze 智能体(4)多智能体
Copyright@youcans 2025
Crated:2025-09

### Coze 多智能体系统的概述 Coze 是一个多智能体系统(Multi-Agent System, MAS)框架,旨在支持复杂的分布式计算环境下的协同工作。它提供了类似于 AutoGen 的功能特性[^1],能够实现多模式复杂对话以及灵活可控的人机协作机制。此外,Coze 还特别强调了对 **Human-in-the-Loop (HITL)** 方法的支持[^2],使得人类可以更深入地参与到智能体的行为决策过程中。 #### 主要特点 1. **多代理交互** Coze 提供了一个强大的多代理交互平台,允许不同类型的智能体之间进行高效的通信和协作。这种设计非常适合处理需要多个独立模块共同完成的任务场景。 2. **灵活性与可扩展性** 开发者可以通过深度自定义来调整智能体的能力和行为逻辑。这不仅提高了框架的适应能力,还让开发者可以根据具体需求快速构建定制化的解决方案。 3. **仿真支持** 针对研究和测试目的,Coze 内置了一套完整的仿真工具链。这些工具可以帮助研究人员模拟真实世界中的各种动态变化条件,从而验证算法的有效性和鲁棒性。 4. **集成 HITL 技术** 基于 HITL 思想的设计理念,使该框架能够在必要时引入人工干预,弥补当前人工智能技术可能存在的不足之处。 #### 使用方法简介 为了更好地利用 Coze 框架开展项目开发或者学术探索活动,建议按照如下方式操作: ##### 安装准备阶段 首先确保本地环境中已安装 Python 以及其他必要的依赖库。接着通过 pip 工具下载最新版本的 coze 库文件: ```bash pip install coze-framework ``` ##### 编写第一个程序实例 下面展示如何创建两个简单的智能体并让他们互相发送消息的一个基础例子: ```python from coze import Agent, Environment class Sender(Agent): def act(self): self.send_message("receiver", "Hello there!") class Receiver(Agent): def receive_message(self, sender_id, content): print(f"Received message from {sender_id}: {content}") env = Environment() sender_agent = Sender(env=env) receiver_agent = Receiver(env=env) env.run(steps=10) ``` 上述代码片段展示了如何初始化一个包含发送方和接收方角色的小型生态系统,并观察它们之间的基本互动过程。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

youcans_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值