Python一些可能用的到的函数系列89 标准时间轴函数

本文介绍如何在Python中生成以分钟为刻度的时间轴数据,以及时间戳到日、分钟级别的转换函数。重点在于减少大规模映射带来的不便,通过分步映射天数和时分秒,避免分布式使用的复杂性。提供了天级别时间戳的生成方法和时间戳转换为日、分钟级别序列的函数,并包含测试验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明

这里的标准是以分钟级为刻度,和时间戳对齐的意思

之前提到过,我的分析将着重在分钟级。目前看来很多应用没有这个东西就不好往下推了(To Data Mill)。

本篇简述生成时间轴的方法,以及一个最简单的变换函数。

内容

生成一个时间轴数据(可以认为是元数据)作为准静态数据,使用时下载到本地再执行函数即可。

1 生成方法

生成时间轴不能一次映射,先映射天,再映射时/分

之前估算过,如果要进行完整的一一映射,分钟级的时间轴至少420M(天级别的不到300k),这样就很不便于分布式使用。

从万年历的角度,其实只有天是比较麻烦的(有闰月/年),时分秒可以采用固定的算式。

下面是根据万年历的方法生成天,并获取每天起始时间戳。

###cell split###
date_list = fs.get_standard_date_list('1970-01-01', '2099-12-31')
###cell split###
atimer = fs.ATimer(base_year=1970,  next_years=200,time_zone=0)
###cell split###
date_ts_list = [atimer.dt2seconds(x) for x in date_list]
###cell split###
tx_df = pd.DataFrame()
###cell split###
tx_df['dt'] = date_list
###cell split###
tx_df['dt_ts'] = tx_df['dt'] .apply(atimer.dt2seconds)
###cell split###
tx_df['dt_ym'] = tx_df['dt'].apply(lambda x: x[:7])
###cell split###
tx_df['dt_yr'] = tx_df['dt'].apply(lambda x: x[:4])
###cell split###

检查日期
在这里插入图片描述
日、月、年及起始时间戳

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值